Gas turbine unit efficiency upgrading for gas-turbine locomotive of a new generation

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Tkachenko A. Y.*, Filinov E. P.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: tau@ssau.ru
**e-mail: filinov@ssau.ru

Abstract

Up to now, at least half of the railways are not electrified. Thus, it is necessary to employ heat engines to set a locomotive into motion. Employing a gas turbine unit (GTU) is one of the possible options. The GTU power is transferred to the generator, and electric motors set the locomotive into motion. It is worth mentioning that in the future aircraft engines of the civil aviation with worked-out lifetime, and updated for the railway application may be installed on a gas-turbine locomotive. Such an approach would significantly reduce the transportation cost value and gas-turbine locomotives implementation to the national economy.

This work was performed in several stages:

– Mathematical models verification used while performing design calculations and GTD operational characteristics computing to increase their identity to the mathematical models employed by PJSC Kuznetsov;

– Studying the number of stages of a low-pressure compressor (LP) effect on the of a gas turbine unit performance employed as a part of the gas-turbine locomotive;

– Proposals development on improving the units’ joint operation to reduce the air consumption through the gas turbine unit.

One of the ways to improve the operation efficiency of gas turbines for application as a part of the gas turbine locomotive consists in the air flow reduction through the unit, which would allow reduce the total pressure losses in the suction tract due to more rational operation conditions of the air filters. The possibility of air consumption reduction through the engine in condition of preserving the effective power of the gas turbine unit by eliminating one and two stages of the low pressure compressor will be discussed further.

The following main scientific results were obtained as a result of the study:

  1. Mathematical models verification used while performing design calculations and GTD operational characteristics computing to increase their identity to the mathematical models employed by PJSC Kuznetsov. Comparison of the results of GTU climatic characteristics computing, based on the initial gas generator, with data obtained at the PJSC Kuznetsov allows talking about the identity of mathematical models of thermo-gas-dynamic computation, performed by the PJSC Kuznetsov, and ACTPA mathematical models;

  2. A study of the low-pressure compressor number of stages impact on the operational characteristics of the GTU employed as a part of the gas-turbine locomotive. Based the obtained results, a conclusion can be made on the inexpediency of changing the number of stages of the low-pressure compressor without refinements (changing the joint operation conditions of the GTU units by throughput efficiency correction of nozzles assembly);

  3. Proposals on improving the joint operation conditions of the units to the effect of air consumption reduction through the GTU, and the most rational options of nozzles assembly of the low-pressure turbine and a free turbine were elaborated.

Keywords:

gas-turbine locomotive, gas turbine unit, mathematical model, climatic characteristics, conceptual design stage

References

  1. Ryzhkova A.D., Shubin A.A. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Naukoemkie tekhnologii v priboro- i mashinostroenii i razvitie innovatsionnoi deyatel'nosti v vuze” (6–12 December 2013). Moscow, MGTU im. N.E. Baumana, 2013, vol. 4, pp. 92-95.

  2. Bartosh E.T. Gazovaya turbina na zheleznodorozhnom transporte (Gas turbine for the railway transport), Moscow, Transport, 1972, 144 p.

  3. Strack D. Union Pacific Railroad Roster of Diesel and Turbine Locomotives, 1934-2009. Utah Rails, 2015. URL: http://utahrails.net/up-diesel-roster/up-diesel-roster-01.php

  4. Duffy M.C. The Gas Turbine in Railway Traction. Transactions of the Newcomen Society, 1998, vol. 70, no. 1, pp. 27-58. DOI: 10.1179/tns.1998.002

  5. Shmidt I.A., Kavalerov B.V., Odin K.A., Shigapov A.A. Informatsionno-upravlyayushchie sistemy, 2009, no. 5(42), pp. 25-31.

  6. Gubarev V.Ya., Kirin A.Yu., Kislekov A.V. Materialy V Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii studentov, molodykh uchenykh i spetsialistov “Energosberezhenie i effektivnost' v tekhnicheskikh sistemakh” (Tambov, 04-06 June 2018), Tambov, Izd- vo Pershina R.V., 2018, pp. 248-249.

  7. Kraev V.M., Tikhonov A.I. Sovremennye otsenki, prognozy i perspektivy razvitiya aviatsionnogo dvigatelestroeniya (Modern estimates, forecasts and prospects of aviation engine-building development), Moscow, Logos, 2018, 154 p.

  8. Dudinskikh A.V., Fatikhova E.R. Materialy XLIV Mezhdunarodnoi molodezhnoi nauchnoi konferentsii “Gagarinskie chteniya – 2018”, Moscow, Luxor-print, 2018, pp. 107-108.

  9. Gurov V.I., Ivanov V.L., Shestakov K.N. Patent RU № 2395703 C2, 27.07.2010.

  10. Gas Turbine Locomotives, GTELs. URL: https://www.american-rails.com/gas-turbine-locomotive.html

  11. Vertepov A.G., Vertepov A.A., Chinenov V.V. Gazovayapromyshlennost', 2010, no. 3(643), pp. 56-59.

  12. Muraeva M.A., Goryunov I.M. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2017, vol. 16, no. 1, pp. 51-61.

  13. Loskutnikov A.A., Goryunov I.M., Bakirov F.G. Vestnik UGATU, 2012, vol. 16, no. 2(47), pp. 127-137.

  14. Kuz'michev V.S., Kulagin V.V., Krupenich I.N., Tkachenko A.Yu., Rybakov V.N. Trudy MAI, 2012, no. 59. URL: http://trudymai.ru/eng/published.php?ID=35106

  15. Kozhinov D.G., Krivosheev I.A., Goryunov I.M. Sovremennyeproblemy nauki i obrazovaniya, 2012, no. 6. URL: http://www.science-education.ru/ru/article/view?id=7642

  16. Goryunov I.M., Boldyrev O.I. Sovremennye problemy nauki i obrazovaniya, 2011, no. 6. URL: http://www.science-education.ru/ru/article/view?id=5180

  17. Kuz'michev V.S., Kulagin V.V., Krupenich I.N., Tkachenko A.Yu., Rybakov V.N. Trudy MAI, 2013, no. 67. URL: http://trudymai.ru/eng/published.php?ID=41518

  18. Grigoriev V.A., Zagrebelnyi A.O., Kuznetsov S.P. On the of power plant mass evaluation in the problem of aircraft turboprop operating procedure optimization. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 103-106.

  19. Lanskii A.M., Lukachev S.V., Kolomzarov O.V. Small gas turbine engines combustion chambers geometric resizing and integral parameters changing trends. Aerospace MAI Journal, 2016, vol. 23, no. 3, pp. 47-57.

  20. Komarov O.V., Revzin B.S., Brodov Yu.M. Teploenergetika, 2006, no. 2, pp. 73-77.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI