Developing the concept of solar energy units robotic assembly in orbit

Machine-building Engineering and Machine Science

Robots, mechatronics and robotic systems


Аuthors

Rebrov S. G.1*, Yanchur S. V.2**, Drondin A. V.2***, Zernov O. D.2****

1. State Scientific Center of the Russian Federation “Keldysh Research Center”, Moscow, Russia
2. Keldysh Research Centre, 8, Onezhskaya str., Moscow, 125438, Russia

*e-mail: rebrov_sergey@mail.ru
**e-mail: y3862@yandex.ru
***e-mail: dav6912@yandex.ru
****e-mail: zernov@kerc.msk.ru

Abstract

The recent foreign experience in the spacecraft development, including lengthy sup-porting structures developing, and giant space telescopes and solar energy systems con-struction indicates that further development in this field of engineering is impossible without transferring the structures manufacturing directly into the space.

As applied to power systems, this is motivated by the low packing efficiency (measured in percent of occupied volume) of the power system elements inside the launch vehicle, and, correspondingly, the small value of the “Stowed Volumetric Power”, or “Stowed Volume Power Density”, or “Stowed Volume Efficiency” (measured in kW/m3) parameter of the head fairing. This practically excludes the other ways of increasing the power systems total power, other than forming by independent delivery of the power systems parts by way of several launches. The latter leads to a multiple increase of the projects costs, which is not often acceptable.

The article proposes a solution to the describedabove said problem in the form of a concept of a robotized assembly of solar power arrays in space, which is based on the application of the Solar Arrays Assembly Machine (SAAM).

SAAM is a robot with which a solar cell of a large area is being assembled by attaching the mounting panels to each other. The mounting panel can be a honeycomb of high stiffness, allowing the SAAM to move along its plane. When moving, the SAAM “clings” to the reference holes made on the mounting plates in advance. SAAM has four telescopic supporting rods for moving around the mounting plates and two mounting arms for fixing the panels.

The concept demonstrates the scheme of the SAAM application. determines The optimal route for the SAAM movement and the order of the solar array assembly are determined. The scope of its possible application has been determined: for assembling a wing of a solar array with an area of less than 64 m2, the target (competitive) mass of the SAAM is of linear dependence on the area of the solar array. When assembling solar arrays with an area of more than 64 m2, traditional deployment systems cannot be employed. So the SAAM does not have competitive alternatives implemented.

The basic SAAM size are determined. A layout was made allowing develop the basic technological operations and algorithms of moving and assembling. The system weight and size parameters depend on the materials used, electromechanical assemblies, SAAM batteries, and will be refined further further work. The time of the solar array forming depends on the speed of SAAM electromechanical units and manipulators operation. But this is not a limiting factor, since the modular structure of the system should allow the SAAM to recharge from the assembled segments at several stages of the assembly.

Keywords:

solar array assembly machine, modular assembly in space, solar power system

References

  1. Ueno H., Nishimaki T., Oda M., Inaba N. Autonomous Cooperative Robots for Space Structure Assembly and Maintenance. Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space: i-SAIRAS 2003. NARA, Japan. 19-23 May 2003, 6 p.

  2. Joosten K.B. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design, 2007. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070023306.pdf

  3. Wall M. US Military Foresees Robot-Run ‘Transportation Hub’ in Space. 14 September 2015. URL: http://www.space.com/30529-darpa-robotic-space-transportation-hub.html

  4. Lee N., Backes P., Burdick J., Pellegrino S., Fuller C., Hogstrom K., Kennedy B., Kim J., Mukherjee R., Seubert C., Wu Y.H. Architecture for in-space robotic assembly of a modular space telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2016, vol. 2, no. 4. DOI: 10.1117/1.JATIS.2.4.041207

  5. Oegerle W.R., Purves L.R., Budinoff J.G., Moe R.V., Carnahan T.M., Evans D.C., Kim C.K. Concept for a Large Scalable Space Telescope: In-Space Assembly. Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter. Proceedings of the SPIE, 2006, vol. 6265. DOI: 10.1117/12.672244

  6. Vyatlev P.A., Dmitriev A.O., Karchaev Kh.Zh., Sysoev V.K. Trudy MAI, 2016, no. 87. URL: http://trudymai.ru/eng/published.php?ID=69658

  7. Hoyt R., Cushing J., Jimmerson G., Slostad J., Dyer R., Alvarado S. SpiderFab™: Process for On-Orbit Construction of Kilometer-Scale Apertures. Tethers Unlimited, Inc., Bothell, Final Report NNX13AR26G - FINAL, 29 February 2016. URL: https://www.nasa.gov/sites/default/files/atoms/files/niac_hoyt_spiderfab_ph_2_finalreport_tagged.pdf

  8. Hoyt R.P. SpiderFab: An Architecture for SelfFabricating Space Systems. AIAA SPACE 2013 Conference and Exposition. URL: http://www.tethers.com/papers/SPACE2013_SpiderFab.pdf

  9. Robotic Arm Gets a Workout, 5 February 2018. URL: https://www.nasa.gov/feature/langley/robotic-arm-gets-a-workout

  10. Clark C., Wood J., Zuckermandel B. Self Deploying, Thin-Film PV Solar Array Structure. 16 AIAA/USU Conference on Small Satellites. Logan, UT. August 2002. URL: https://digitalcommons.us.edu/cgi/viewcontent.cgi?referer=https://www.google.ru/&httpsredir=1&article=1941&context=smallsat

  11. Vinogradova T. Northrop Grumman-Caltech Space Solar Power Initiative (SSPI). Technology maturation. Space Solar Power Workshop, IEEE WiSEE, 2017. URL: https://www.mtu.edu/ece/department/faculty/full-time/zekavat/pdfs/ssp-2017/ng-caltechpanel-sspi- technology-maturation-approved.pdf

  12. Spaceflight Demonstration of a Power and Propulsion Element (PPE). 30 November 2017. URL: https://www.fbo.gov/utils/view?id=fa41d7c6924162f2a72e644272f16588

  13. Mikulas M.M., Collins T.J., Doggett W., Dorsey J., Watson J. Truss Performance and Packaging Metrics. NASA Technical Document 20060008916. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060008916.pdf

  14. Hoyt R., Cushing J., Slostad J. SpiderFab™: Process for On-Orbit Construction of Kilometer-Scale Apertures, Ththers Unlimited Inc., Bothell, Final Report NNX12AR13G-FINAL, 2013. URL: https://www.nasa.gov/sites/default/files/files/Hoyt_2012_PhI_SpiderFab.pdf

  15. Hoyt R.P., Cushing J., Slostad J., Jimmerson G. TRUSSELATOR: On-Orbit Fabrication of High- Performance Composite Truss Structures. AIAA SPACE 2014 Conference and Exposition, San Diego, CA. DOI: 10.2514/6.2014-4337

  16. Orbital ATK Supports Ground Testing on CIRAS at NASA’s Langley Research Center. 30 August 2017. URL: https://www.nasa.gov/mission_pages/tdm/irma/orbital-atk-supports-ground-testing-on-ciras-at-nasa- s-langley-research-center.html

  17. Northrop Grumman Corporation. CIRAS – The Commercial Infrastructure for Robotic Assembly and Services, 2018. URL: http://www.northropgrumman.com/Capabilities/SpaceLogistics/Documents/CIRAS_Factsheet.pdf

  18. NASA Puts In-Space Assembly Robots to the Test. June 25, 2018. URL: https://www.nasa.gov/press-release/langley/nasa-puts-in-space-assembly-robots-to-the-test

  19. NASA’s Dragonfly Project Demonstrates Robotic Satellite Assembly Critical to Future Space Infrastructure Development. 13 September 2017. URL: https://www.nasa.gov/mission_pages/tdm/irma/nasas-dragonfly-project-demonstrates-robotic-satellite-assembly-critical-to-future-space.html

  20. Patane S., Joyce E.R., Snyder M.P., Shestople P. Archinaut: In-Space Manufacturing and Assembly for Next-Generation Space Habitats. AIAA SPACE and Astronautics Forum and Exposition, 2017, Orlando, FL. DOI: 10.2514/6.2017-5227

  21. Kosmicheskaya transportno-manipulyatsionnaya sistema dlya vypolneniya tekhnologicheskikh operatsii na vneshnei poverkhnosti kosmicheskikh apparatov i podderzhki ekipazha pri vnekorabel’noi deyatel’nosti, 2018. URL: http://www.rtc.ru/ru/kosmicheskaya-robototekhnika/kosmicheskaya-transportno-manipulyatsionnaya-sistema

  22. Gol’din V.L., Kurbatov E.M., Yamashev E.M. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2008, vol. 51, no. 8, pp. 49-56.

  23. Drondin A.V., Zernov O.D., Yanchur S.V. Patent RU 2 623 781 C2, 29.06.17.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI