Low-current cathode designing for small stationary plasma thruster

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles

DOI: 10.34759/vst-2019-4-81-89


Parakhin G. A.1*, Rumyantsev А. V.2**, Pankov B. B.1***, Katashova M. I.1****

1. Experimental Design Bureau “Fakel”, 181, Moskovsky av, Kaliningrad, 236001, Russia
2. Immanuel Kant Baltic Federal University, IKBFU, 14, A. Nevskogo str., Kaliningrad, 236041, Russia

*e-mail: info@fakel-russia.com
**e-mail: albert37@list.ru
***e-mail: boris.pankoff@yandex.ru
****e-mail: katashova@fakel-russia.com


At present, the interest of spacecraft producers to low-power electric propulsions and propulsion installations on their basis is growing. The above mentioned fact imparts topicality to the task of expanding the family of cathodes for such thrusters towards decreasing discharge current maintained by the cathode.

It is well known, that effective cathode of the electric propulsion does not require any additional heat source in a steady-state operation, and thermoemitter operating temperature maintaining is ensured by the ion current on its surface. This article describes two complementary trends of works aimed at such cathode designing.

The first trend consists in the cathode thermal scheme optimization and thermal losses reduction. Some of design solutions, related to this field of work, were employed in the cathode experimental design and demonstrated their efficiency. On the other hand, the optimized design appeared to be sensitive to the smallest changes in the thermal scheme and, thus, needed a retrofit.

The second trend is a development and application of new thermal emissive materials with a lower operating temperature. The article presents the results of the works which have been in progress with some intermittences since 2013. The article demonstrates the results of Barium oxide-based thermoemitter samples developed and tested at EDB Fakel. The issues of thermoemitter manufacturing procedure; raw materials (powders) purity and dispersity; sintering temperature, and tool set, developed in the course of the works, are tackled.

As the result of handling of work, the authors came to a conclusion that for a higher efficiency of the new cathode design being developed it is necessary to consolidate the results of works in both trends. Further additional measures for the design optimization are planned.


low-current cathode, thermal screen, impregnated cathode, thermoemission, thermal scheme


  1. L.A., Boyarchuk K.A. Voprosy elektromekhaniki. Trudy NPP VNIIEM, 2005, vol. 102, pp. 12-27.

  2. Tkachuk A.V., Kozubski K.N., Rumyantsev A.V. Propulsion system with stationary plasma thrusters aboard small spacecraft. Aerospace MAI Journal, 2014, vol. 21, no. 2, pp. 49-54.

  3. Gorbachev Yu.M., Gopanchuk V.V. Patent 2502238 C2, 20.12.2013.

  4. Kim V.P., Merkur’ev D.V., Sidorenko E.K. Investigation of plasma and radial ion flow parameters in the vicinity of the SPT exit plane. Aerospace MAI Journal, 2014, vol. 21, no. 1, pp. 95-103.

  5. Chubov P.N., Saevets P.A., Rumyantsev A.V. Thermal calculation of the SPT-50 stationary plasma thruster. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 70-79.

  6. Sengupta A. Destructive Physical Analysis of Hollow Cathodes from the Deep Space 1 Flight Spare Ion Engine 30,000 Hr Life Test. 29th International Electric Propulsion Conference IEPC-2005 (Princeton University, New Jersey, October 31 – November 4 2005). URL: http://hdl.handle.net/2014/39521

  7. Albarède L., Lago V., Lasgorceix P., Dudeck M., Bugrova A.I., Malik K. Interaction of a hollow cathode stream with a hall thruster. Orlean, Laboratoire d’Aèrothermique, 2005, 18 p.

  8. Pil’nikov A. V. Certain problem questions of high- power electric rocket propulsion system creation in Russia. Aerospace MAI Journal, 2011, vol. 18, no. 3, pp. 97-103.

  9. Loyan A.V., Koshelev N.N., Soloninko E.P., Ageeva E.G. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2010, no. 8(75), pp. 68-72.

  10. Semenikhin S.A., Sysoyev D.V., Tikhonov V.B. Experimental investigation of barium additive influence on functioning of magnetoplasma thrusters. Aerospace MAI Journal, 2007, vol. 14, no. 1, pp. 20-29.

  11. Shtyrlin A.F. Neutralizing of colloidal electroroket thruster charged particles beam. Aerospace MAI Journal, 2011, vol. 18, no. 1, pp. 54-59.

  12. Streletskii A.N., Portnoi V.K., Leonov A.V., Borunova A.B., Pshechenkov P.F., Leipunskii I.O., Berezkina N.G., Butyagin P.Yu. Khimiya v interesakh ustoichivogo razvitiya, 2002, vol. 10, no. 1-2, pp. 245-254.

  13. Chuvil’deev V.N., Nokhrin A.V., Baranov G.V., Moskvicheva A.V., Lopatin Yu.G., Kotkov D.N., Blagoveshchenskii Yu.V., Kozlova N.A., Shotin S.V., Konychev D.A., Piskunov A.V. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2010, no. 2-1, pp. 47-59.

  14. Espe W. Werfcstofitamde der Hochvakuumtedinik. Band 1, Metalle und metallisch leitende Werbsioffe, VEB Deutscher Verlag der Wissen- schaften, Berlin, 1959.

  15. Nikonov B.P. Oksidnyi katod (Oxide cathode), Moscow, Energiya, 1979, 240 p.

  16. Svettsov V.I. Vakuumnaya i plazmennaya elektronika (Vacuum and plasma electronics), Ivanovo, Ivanovskii gosudarstvennyi khimiko-tekhnologicheskii universitet, 2003, 172 p.

  17. Kalinin M.V., Kopylov V.V., Luchin A.A., Mikhailova N.M. Patent RU 2 278 438 Cl, 20.06.2006.

  18. Kopylov V.V., Luchin A.A., Mikhailova N.M. Patent RU 2340035 C2, 27.11.2008.

  19. Ermoshkin Yu.M., Galaiko V.N., Kim V.P., Kochev Yu.V., Merkur’ev D.V., Ostapushenko A.A., Popov G.A., Smirnov P.G., Shilov E.A., Yakimov E.N. Specifics of transients in the discharge circuit during the SPT-140D plasma engine starting. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 80-88.

  20. Gnizdor R.Yu., Mitrofanova O.A., Rumyantsev A.V. Investigation an influence of SPT magnetic field on efficiency of cathode-compensator operation. Aerospace MAI Journal, 20l2, vol. 19, no. 2, pp. 47-52.

mai.ru — informational site of MAI

Copyright © 1994-2023 by MAI