The onboard mathematical model application to control gas turbine engine with extra combustion chamber

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2019-4-90-97

Аuthors

Gol'berg F. D.*, Gurevich O. S.**, Zuev S. A.***, Petukhov A. .****

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: fdgolberg@ciam.ru
**e-mail: gurevich_os@ciam.ru
***e-mail: zuevsa@ciam.ru
****e-mail: aapetukhov@ciam.ru

Abstract

Modern gas turbine engines control is performed by the parameters accessible for measuring, which for the most part characterize indirectly the engine critical parameters such as thrust value R, specific fuel consumption CR, as well as parameters, affecting directly operational safety and reliability, such as gas temperature  in the combustion chamber (CC), stall margin (ΔSm) etc.

Employing the all-modes self-identified thermo­gas-dynamic model of the above said engine in modern digital automatic control systems (ACS) offer scopes for new opportunities of substantial control quality enhancing. This model allows computing with high precision the engine critical parameters in real-time scale, and realize the engine control directly by these parameters.

The article presents the results of studying such methods for controlling the fuel consumption GFE into extra combustion chamber, and nozzle throat area FT of the multi-mode engine.

The scheme of structural and algorithmic construction of such system is introduced.

Implementation of the three control programs, such as thrust changing RΣ depending on throttle position, and minimum  and maximum  values limiting of the air-to-fuel ratio αECC in the extra combustion chamber is being accomplished by affecting the fuel consumption (GFE).

Ensuring the minimum possible value of the specific total fuel consumption C = (GFM + GFA )/RΣ) , as well as restriction of fan stall margin, are implemented by affecting nozzle throat area by the extremal controller.

The effectiveness evaluation of the control methods under consideration was brought about by the integrated mathematical models “Engine – ACS – Onboard Mathematical Model” employed in CIAM.

It was shown, that direct engine thrust control by the impact on fuel consumption into the extra combustion chamber allowed ensuring the thrust value invariance to the engine components degradation while in operation.

The impact on the nozzle throat area herewith minimizes specific fuel consumption and limits the fan stall margin.

Keywords:

automatic control system, gas turbine engine, “virtual engine”, nozzle throat area, fuel consumption, extra combustion chamber

References

  1. Kreiner A., Lietzau K. The use of onboard real-time models for jet engine control. MTU Aero Engines, Germany, 2004. URL: http://docshare01.docshare.tips/files/5150/51504922.pdf

  2. Intelligent Propulsion System Foundation Technology. Summary of Research. The Ohio State University Research Foundation. National Aeronautics and Space Administration Glenn Research Center (NASA/CR) – 2008-215226. June 2008.

  3. Litt J.S., Simon D.L., Garg S. et al. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems. NASA/TM-2005- 213622.

  4. Gol’berg F.D., Gurevich O.S., Petukhov A.A. Trudy MAI, 2012, no. 58. URL: http://trudymai.ru/eng/published.php?ID=33278

  5. Golberg F.D., Gurevich O.S., Petukhov A. Improving control reliability and quality of aircraft engines by means the software «virtual engine». 29th Congress of the International Council of the Aeronautical Sciences (ICAS, St. Petersburg, Russia, 07-12 September 2014).

  6. Gurevich O.S., Gol’berg F.D., Zuev S.A., Busurin V.I. Trudy MAI, 2017, no. 93. URL: http://trudymai.ru/eng/published.php?ID=80286

  7. Gurevich O.S., Golberg F.D., Petukhov A.A., Zuev S.A. «Virtual engine» software usage for air bleed control in GTE units’ cooling systems. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 83-94.

  8. Gurevich O.S. (eds) Sistemy avtomaticheskogo upravleniya aviatsionnymi gazoturbinnymi dvigatelyami (Automatic control systems for aircraft gas-turbine engines), Moscow, Torus Press, 2010, 264 p.

  9. Garg S., Kumar A., Mathews H.K., Rosenfeld T., Rybarik P., Viassolo D.E. Intelligent control and health monitoring. More Intelligent Gas Turbine Engines, 2009, RTO-TR-AVT-128, chapter 3, 178 p.

  10. Litt J.S., Simon D.L., Garg S. et al. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems. Journal of Aerospace Computing, Information, and Communication, 2005, vol. 1, no. 12, pp. 543-563. DOI: 10.2514/1.13048

  11. Nechaev Yu.N. Zakony upravleniya i kharakteristiki aviatsionnykh silovykh ustanovok (Control laws and performances of aircraft power units), Moscow, Mashinostroenie, 1995, 400 p.

  12. Gurevich O.S., Gol’berg F.D., Selivanov O.D. Integrirovannoe upravlenie silovoi ustanovkoi mnogorezhimnogo samoleta (Integrated propulsion control of multimode aircraft), Moscow, Mashinostroenie, 1994, 304 p.

  13. Kostyukov V.M., Kapyrin N.I. Trudy MAI, 2011, no. 49. URL: http://trudymai.ru/eng/published.php?ID=28075

  14. Nechaev Yu.N., Fedorov P.M., Kotovskii V.N., Polev A.C. Teoriya aviatsionnykh dvigatelei (Aircraft Engines Theory), Moscow, VVIA im. prof. N.E. Zhukovskogo, 2005. Part 1, 366 p.

  15. Nechaev Yu.N., Fedorov P.M., Kotovskii V.N., Polev A.C. Teoriya aviatsionnykh dvigatelei (Aircraft Engines Theory), Moscow, VVIA im. prof. N.E. Zhukovskogo, 2005. Part 2, 335 p.

  16. Skibin V.A., Solonin V.I., Palkin V.A. Raboty vedushchikh aviadvigatelestroitel’nykh kompanii v obespechenie sozdaniya perspektivnykh aviatsionnykh dvigatelei <analiticheskii obzor> (The works of leading aircraft-engine-building companies to ensure advanced aircraft engines development), Moscow, TsIAM, 2010, 672 p.

  17. Kotel’nikov V.R., Khrobystova O.V., Zrelov V.A., Ponomarev V.A. Dvigateli boevykh samoletov Rossii (Engines of Russian Combat Aircraft), Rybinsk, Mediarost, 2017, 616 p.

  18. Kurzke J. and Riegler C. A Mixed Flow Turbofan Afterburner for the Definition of Reheat Fuel Control Laws. May 1998, Design Principles and Methods for Aircraft Gas Turbine Engines, RTO-MP-8, February 1999.

  19. Orme J., Schkolnik G. Flight Assessment of the Onboard Propulsion System Model for the Performance Seeking Control Algorithm on an F-15 Aircraft. NASA Technical Memorandum 4705 (NASA TM-4705), AIAA-1995- 2361. DOI: 10.2514/6.1995-2361

  20. Desai N.C. and Crainic C. Adaptive Thermodynamic Engine Model for the Next Generation Control System for Helicopter Engines. American Helicopter Society 58th Annual Forum (Montreal, Canada, 11-12 June 2002).

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI