Stealthy movement of aerial object along rectilinear paths in the onboard doppler radar station detection zone

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


DOI: 10.34759/vst-2019-4-191-199

Аuthors

Kirsanov A. P.

Higher School of Economics, 20, Myasnitskaya str., Moscow, 101000, Russia

e-mail: ki@hse.ru

Abstract

Onboard radar stations operating in the pulse–Doppler mode show the characteristic feature in the detection zone. This feature consists in the fact that in every point of the detection zone the aircraft has a sector of directions moving along wich it not detected by the onboard Doppler radar. This sector is called the sector of invisible motion directions of the aircraft. Due to these features, there are stealthy paths allowing an aircraft stays non-detected by Doppler radar station, such as radar station of an airborne early warning aircraft, while moving along them. The majority of stealthy trajectories is curvilinear with variable curvature. The article deals with the study of the rectilinear paths of the aircraft stealthy movement in the onboard Doppler radar station detection zone. It was established that any aerial object position relative to the early warning aircraft might be the start of the rectilinear stealthy path at the appropriate selection of direction of movement. An equation to determine the stealthy movement duration along the rectilinear path depending on the aircraft initial position and its direction of movement was obtained. Areas in the detection zone of the pulse-Doppler radar station to which the aerial object may enter, moving along the rectilinear stealth paths, were plotted. Their shapes and sizes depending on the aerial object position and motion parameters relative to the radar station were studied. Conditions of the unlimited time duration of movement along the stealthy paths, and conditions of the rectilinear stealthy paths for the aerial object outgoing to the onboard Doppler radar station location were found.

Keywords:

Doppler radar station detection zone, stealthy trajectory, rectilinear movement

References

  1. Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya, problemy razrabotki i osobennosti funktsionirovaniya (Aircraft complexes for radar picket and guidance. Principles of development, problems of design and functioning specifics), Moscow, Radiotekhnika, 2014, 528 p.

  2. Long M.W. Airborne Early Radar Warning System Concepts, SciTech, 2004, 519 p.

  3. Gandurin V.B., Kirsanov A.P. Radiotekhnika, 2007, no. 10, pp. 42–46.

  4. Kirsanov A.P. Avtomatika i telemekhanika, 2014, no. 9, pp. 144-155.

  5. Gordon N., Ristic B. Tracking airborne targets occasionally hidden in the blind Doppler. Digital Signal Processing, 2002, vol. 12, no. 2-3, pp. 383–393. DOI: 10.1006/dspr.2002.0439

  6. Han W., Tang Z., Zhu Z. Method of target tracking with Doppler blind zone constraint. Journal of Systems Engineering and Electronics, 2013, vol. 24, no. 6, pp. 889-898. DOI: 10.1109/JSEE.2013.00103

  7. Wu W., Liu W., Jiang J., Gao L., Wei Q., Liu C. GM- PHD filter-based multi-target tracking in the presence of Doppler blind zone. Digital Signal Processing, 2016, vol. 52, pp. 1-12. DOI: 10.1016/j.dsp.2016.01.014

  8. Wei L., Wu W., Sun H., Luo M., Wu X. GM- CBMeMBer-based multi-target tracking in the presence of Doppler blind zone. 20th International Conference on Information Fusion (10-13 July 2017, Xi’an, China). DOI: 10.23919/ICIF.2017.8009646

  9. Clark J.M.C., Kountouriotis P.A., Vinter R.B. A New Gaussian Mixture Algorithm for GMTI Tracking Under a Minimum Detectable Velocity Constraint. IEEE Transactions on Automatic Control, 2009, vol. 54, no. 12, pp. 2745-2756. DOI: 10.1109/TAC.2009.2031720

  10. Clark J.M.C., Kountouriotis P.A., Vinter R.B. A new algorithm for GMTI tracking problems, subject to a Doppler blind zone constraint. IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications (15-16 April 2008, Birmingham, UK). DOI: 10.1049/ic:20080056

  11. Mertens M., Koch W., Kirubarajan T. Exploiting Doppler Blind Zone Information for Ground Moving Target Tracking with Bistatic Airborne Radar. IEEE Transactions on Aerospace and Electronic Systems, 2014, vol. 50, no. 1, pp. 130-148. DOI: 10.1109/TAES.2013.120718

  12. Du S., Shi Z., Zang W., Chen K. Using interacting multiple model particle filter to track airborne targets hidden in blind Doppler. Journal of Zhejiang University- SCIENCE A, 2007, vol. 8, no. 8, pp. 1277-1282. DOI: 10.1631/jzus.2007.A1277

  13. Huang H., Rong Y., Foo P.H., Ng G.W., Mertens M., Ulmke M., Koch W. Convoy tracking in Doppler blind zone regions using GMTI radar. 16th International Conference on Information Fusion (9-12 July 2013, Istanbul, Turkey).

  14. Zagrebel’nyi I.R., Suzanskii D.N. Materialy XXII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Radiolokatsiya, navigatsiya, svyaz’” (Voronezh, 19-21 April 2016). Voronezh, Izdatel’skii dom VGU, 2016, pp. 1376-1385.

  15. Wang L.-X., Zhou D.-Y., Zheng R. A Stealthy Path Planning Method for Aircraft by Constant Azimuth. Proceedings of the International Conference on Parallel and Distributed Computing, Applications and Technologies (8-11 December 2010, Wuhan, China). DOI: 10.1109/PDCAT.2010.84

  16. Liu H., Chen J., Shen L., Chen S. Low observability trajectory planning for stealth aircraft to evade radars tracking. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, vol. 228, no. 3, pp. 398-410. DOI: 10.1177/0954410012474557

  17. Inanc T., Muezzinoglu M.K., Misovec K., Murray R.M. Framework for Low-Observable Trajectory Generation in Presence of Multiple Radars. Journal of Guidance, Control, and Dynamics, 2008, vol. 31, no. 6, pp. 1740­–1749. DOI: 10.2514/1.35287

  18. Lingxiao W., Deyun Z. Effective Path Planning Method for Low Detectable Aircraft. Journal of Systems Engineering and Electronics, 2009, vol. 20, no. 4, pp. 784-789.

  19. Ding Xiaodong, Liu Yi, Li Weimin. Based on dynamic RCS of Real-time flight path planning method. Systems Engineering and Electronics, 2008, vol. 5, no. 30, pp. 868-871.

  20. Grumondz V.T., Polishcuk M.A. The problem of guidance of a gliding unmanned aerial vehicle onto a moving target. Aerospace MAI Journal, 2014, vol. 21, no. 4, pp. 7-12.

  21. Kirsanov A.P. Kinematic properties of aircraft concealed motion trajectory in detection zone of the onboard doppler radar. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 129-136.

  22. Kirsanov A.P., Yampol’skii S.M. Trudy MAI, 2015, no. 84. URL: http://trudymai.ru/eng/published.php7ID=63124

  23. Ostoslavskii I.V., Strazheva I.V. Dinamika poleta. Traektorii letatel’nykh apparatov (Dynamics of flight. Trajectories of aircraft), Moscow, Mashinostroenie, 1969, 502 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI