Low-speed impact testing of various composites

Metallurgy and Material Science

Powder metallurgy and composite materials

DOI: 10.34759/vst-2019-4-216-229


Bezzametnov O. N.*, Mitryaikin V. I.**, Khaliulin V. I.***

Kazan National Research Technical University named after A.N. Tupolev, KNRTU-KAI, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: bezzametnovoleg@mail.ru
**e-mail: vmitryaykin@bk.ru
***e-mail: pla.kai@mail.ru


The purpose of the study consists in technique development for detecting impact damages character of composites with various nature of reinforcing material and interlacement type. A series of experiments on the presence of internal defects after impact damages inflicting was conducted while this work performing. The samples based fourteen fabric types were selected as the subject of the study, including fiberglass cloth, hybrid materials, Kevlar® and high molecular polythene. Temperature mode was developed, and technology for plates manufacturing by the compression molding technique was worked out.

The experiment technique was being developed with regard for the international Standards recommendations for damage resistance testing while the falling load impact. Evaluation of criteria on impact resistance was performed within the energy range of 10, 20 and 30 J. Initially the dent depth was determined with digital detecting head. The internal damages areas were being estimated by the semi-automated ultrasonic NDT complex with phased array. This technology allows obtaining scanning results in the form of projections onto three planes, namely C-scan (top view), S-scan (end view) and B-scan (side view). To analyze the damages areas of samples after the impact, the C-scan, depicting the scanned area below the sensor, was registered. The layer-by-layer studying of the samples damages character was performed by the X-ray computer tomography method. This method allows visualize the sample internal structure by processing shadow projections obtained while the object X-raying.

The obtained results allow determine optimum characteristics of the composite material pack content while developing the structure with the set requirements to the impact resistance. The nose part elements and high lift devices of an aircraft, helicopter blades and transmission shafts, moving parts of jet engines may be among these structures.

Based on these works results graphs of the damages areas dependence on the impact energy of each material were plotted. The less damage area was demonstrated by the fiberglass samples, while the greatest one belonged to the fabrics of hybrid content. To evaluate the impact resistance criteria the energy of the damage initiation, maximum load of impact and absorbed energy were registered. Maximum value of the damage initiation energy was demonstrated by the samples from hybrid fabric material, and the least one by the fiberglass samples. This criterion reflects the limiting value of the impact energy which a material can sustain without being damaged.


composites, impact actions, damage, NDT, ultrasonic pulse-echo flaw detection, computed tomography


  1. Klimov V.G., Nikitin V.I., Nikitin K.V., Zhatkin S.S., Kogteva A.V. Wear-resistant composites application in repair and modification technology of the GTD rotor blades. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 251-266.

  2. Soloshenko V.N., Popov Yu.I. Conceptual design of composite wing box structures for a medium-range passenger airplane. Aerospace MAI Journal, 2013, vol. 20, no. 1, pp. 16-30.

  3. Mitrofanov O.V. Composite material wing panel of minimal mass design considering supercritical skin response. Aerospace MAI Journal, 2002, vol. 9, no. 1, pp. 35-42.

  4. Nebelov E.V., Pototskii M.V., Rodionov A.V., Gorskii A.N. Mechanism of damage propagation to the propeller blades of composite materials with exposed damaging elements. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 26-31.

  5. Poliansky V.V., Nesterov V.A. Estimation of reliability alteration for airframe configuration with mechanical damage. Aerospace MAI Journal, 2009, vol. 16, no. 5, pp. 32-39.

  6. Fegenbaum Yu.M., Dubinskii S.V., Bozhevalov D.G., Sokolov Yu.S., Metelkin E.S., Mikolaichuk Yu. A., Shapkin V.S. Obespechenie prochnosti kompozitnykh aviatsionnykh konstruktsii s uchetom sluchainykh ekspluatatsionnykh udarnykh vozdeistvii (Ensuring strength of composite aircraft structures with regard to accidental operational impact), Moscow, 2018, 228 p.

  7. Kolesnikov Yu.V., Morozov E.M. Mekhanika kontaktnogo razrusheniya (Mechanics of contact fracture), Moscow, LKI, 2012, 224 p.

  8. Kulik T.A., Kochergin Yu.S., Zaitsev Yu.S., Pakter M.K., Askadsiki A.A. Plasticheskie massy, 1985, no. 4, pp. 25-26.

  9. Shanmugam D., Chen F., Siores E., Brandt M. Comparative study of jetting machining technologies over laser machining technology for cutting composite materials. Composite Structure, 2002, no. 57, pp. 289–296.

  10. Tret’yakova O.N., Svetushkov N.N. Trudy MAI, 2010, no. 40. URL: http://trudymai.ru/eng/published.php7ID=22821

  11. Kompozity polimernye. Metod ispytanii na soprotivlenie povrezhdeniyu pri udare padayushchim gruzom. GOST 33496-2015 (Polymer composites. Test method for resistance to damage when struck by falling cargo. State Standard 33496-2015), Moscow, Standartinform, 2016, 15 p.

  12. ASD-STAN prEN 6038 P1 “Fiber Reinforced Plastics – Test Method – Determination of the Compression Strength after Impact”.

  13. Boichuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Vse materialy. Entsiklopedicheskii spravochnik. Moscow, VIAM, 2012, no. 10, pp. 38-44.

  14. Boitsov B.V., Vasil’ev S.L., Gromashev A.G., Yurgenson S.A. Trudy MAI, 2011, no. 49. URL: http://trudymai.ru/eng/published.php?ID=28061&PAGEN_2=2

  15. Mitryaikin V.I., Mikhailov S.A., Bugakov I.S., Zakirov R.Kh. Nerazrushayushchii kontrol’ kompozitsionnykh konstruktsii komp’yuternym tomografom (Non-destructive testing of composite structures with computer tomograph), Kazan, Kazanskii gosudarstvennyi tekhnicheskii universitet, 2011, 192 p.

  16. Krylov A.A., Moskaev V.A. A technique for fluoroscopic control and analysis of technical condition of aircraft structural elements with honeycomb filler. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 139-146.

  17. Zaitseva T.A., Mitryaikina E.V. Nauchno-tekhnicheskii vestnik Povolzh’ya, 2012, no. 6, pp. 311-315.

  18. Sidorov I.N., Mitryaikin V.I. Izbrannye trudy XXXXVIII Vserossiiskogo simpoziuma po mekhanike i protsessam upravleniya, Moscow, RAN, 2018, 253 p.

  19. Bogdanov V.R., Sulym G.T. A modelling of plastic deformations growth under impact, based on a numerical solution of the plane stress state problem. Aerospace MAI Journal, 2013, vol. 20, no. 3, pp. 196-204.

  20. Gorshkov A.G. Mechanics for interaction of deformable structures with continuum mediums and physical fields. Aerospace MAI Journal, 2005, vol. 12, no 2, pp. 156-163.

mai.ru — informational site of MAI

Copyright © 1994-2023 by MAI