Aircraft target purpose impact on working process optimal parameters and power plant configuration

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2020-2-112-122

Аuthors

Tkachenko A. Y.*, Kuz'michev V. S.**, Filinov E. P.***, Avdeev S. V.****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: tau@ssau.ru
**e-mail: kuzm@ssau.ru
***e-mail: filinov@ssau.ru
****e-mail: avdeevsergeyvik@gmail.com

Abstract

The presented article studied the aircraft target purpose impact on working process optimal parameters and structural schemes of small-sized gas turbine engines (GTE).

The engine optimization was performed as a part of the aircraft system. Total weight of the fuel and power plant and the fuel, required for flight, as well as specific fuel consumption of the aircraft per ton-kilometer were being used as functions of the GTE efficiency. The aircraft of light, administrative and regional types was considered. Commercial loading weight (the number of passengers), flight range and trajectory were set for each of the aircraft under consideration.

The database of possible structural schemes of the engines was formed based on the initial data. Further, the engine evaluation criteria in the aircraft system were being computed. Minimax method of optimization was employed for rational solution obtaining. With this, functional limitations for the engine of each scheme were accounted for while optimization. Optimization of small-sized gas turbine engine in the aircraft system was performed with “ASTRA” CAE system.

The optimization results are presented in the form of dependencies of optimal of working process parameters of a small-size GTE on flight range for the aircraft under consideration. The studies revealed that with the flight range increase, the degree of bypass ratio and total degree of pressure ratio increased, the degree of pressure ratio in the fan decreased, and the gas temperature prior to the turbine changes insignificantly. It was found that with the engine size increase, the flight range exerted relatively slight impact on the working process optimal parameters. With the flight range increase, optimal parameters values by various criteria tend to minimax solution for any engine scheme.

The presented study demonstrated that the target purpose of the aircraft significantly affects the optimal parameters of the the power plant working process with the small-size GTE. In return, the working process parameters and the engine size determine its most rational design scheme.

Keywords:

optimization, small-size turbojet engine, aircraft target purpose impact

References

  1. Grigor’ev V.A., Kuz’michev V.S. et al. Vybor parametrov i termogazodinamicheskie raschety viatsionnykh gazoturbinnykh dvigatelei (Parameter selection and thermo-gas-dynamic calculations of aircraft gas turbine engines), Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet, 2009, 202 p.

  2. Kulagin V.V. (ed.) Teoriya, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok. V 3 kn. Kn. 3. Osnovnye problemy. Nachal’nyi uroven’ proektirovaniya, gazodinamicheskaya dovodka, spetsial’nye kharakteristiki i konversiya aviatsionnykh GTD (Theory, calculation and design of aircraft engines and power plants. Book 3. Main problems: initial design level, gas-dynamic adjustment, special characteristics and conversion of gas turbine engines), Moscow, Mashinostroenie, 2005, 464 p.

  3. Visser W.P.J. Generic Analysis Methods for Gas Turbine Engine Performance: The development of the gas turbine simulation program GSP. Doctoral thesis. Technische Universiteit Delft, Faculty Aerospace Engineering Department. 2015-01-06, 289 p. DOI: 10.4233/uuid:f95da308-e7ef-47de-abf2-aedbfa30cf63

  4. Epstein A.H. Millimeter-scale, MEMS gas turbine engines. ASME Turbo Expo “Power for Land, Sea, and Air” (16-19 June 2003, Atlanta, Georgia, USA), 2003, vol. 4, pp. 669-696. GT-2003-38866. DOI: 10.1115/GT2003-38866

  5. Carlos S., Madhavan K., Gupta G., Keese D., Maheshwaraa U., Seepersad C. Development and application of a flexibility-based method for multi-scale design. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (6-8 September 2006, Portsmouth, Virginia). AIAA 2006-7063. Vol. 3, pp. 1855-1870. DOI: 10.2514/6.2006-7063

  6. Zinenkov Yu.V., Lukovnikov A.V. Materialy XL Akademicheskikh chtenii po kosmonavtike “Aktual’nye problemy rossiiskoi kosmonavtiki”, Moscow, MGTU im. N.E. Baumana, 2016, pp. 332–333.

  7. Kuz’michev V.S., Tkachenko A.Y., Filinov E.P. Effect of turbojet engine dimensionality on optimal working process parameters selection. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 40-45.

  8. Maslov V.G., Bochkarev S.K., Kuz’michev V.S. Izvestiya vysshikh uchebnykh zavedenii, 1976, no. 4, pp. 68-74.

  9. Tkachenko A.Yu., Filinov E.P., Ostapyuk Ya.A. Vestnik UGATU, 2018, vol. 22, no. 2(80), pp. 64–72.

  10. Kirichkov M.A., Elanskii A.V., Kravchenko I.F. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2013, no. 10(107), pp. 37-41.

  11. Kuz’michev V.S., Tkachenko A.Yu., Rybakov V.N., Krupenich I.N., Kulagin V.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2012, no. 5(36), pp. 160-164.

  12. Tkachenko A.Yu., Rybakov V.N. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (25-27 June 2014, Samara) “Problemy i perspektivy razvitiya dvigatelestroeniya”, Samara, Samarskii natsional’nyi issledovatel’skii universitet imeni akademika S.P. Koroleva, 2014, part 1, p. 240.

  13. Kulagin V.V., Kuz’michev V.S. Teoriya, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok. V 2 kn. Kn. 1. Osnovy teorii GTD. Rabochii protsess i termogazodinamicheskii analiz (Theory, calculation and design of aircraft engines and power plants. Book 1. Working process and thermo-gasdynamic analysis), Moscow, Innovatsionnoe mashinostroenie, 2017, 332 p.

  14. Ivanov V.V., Osipov I.L. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2007, no. 1, pp. 61-64.

  15. Brusov V.S., Baranov S.K. Optimal’noe proektirovanie letatel’nykh apparatov. Mnogotselevoi podkhod (Optimal aircraft design: Multipurpose approach), Moscow, Mashinostroenie, 1989, 232 p.

  16. Rumyantsev S.V. Tematicheskii sbornik nauchnykh trudov instituta “Avtomatizirovannoe proektirovanie dvigatelei letatel’nykh apparatov”, Moscow, MAI, 1979, pp. 4-10.

  17. Stechkin B.S. Izbrannye trudy. Teoriya teplovykh dvigatelei (Selected works. Theory of heat engines), Moscow, Fizmatlit, 2001, 428 p.

  18. Yugov O.K., Selivanov O.D. Osnovy integratsii samoleta i dvigatelya (Basics of aircraft and engine integration), Moscow, Mashinostroenie, 1989, 304 p.

  19. Parkhomov A.L. Trudy TsIAM, no. 446, Moscow, TsIAM, 1968, 32 p.

  20. Gurevich O.S., Gol’dberg F.D., Selivanov O.D. Integrirovannoe upravlenie silovoi ustanovkoi mnogorezhimnogo samoleta (Integrated power plant control of multi-mode aircraft), Moscow, Mashinostroenie, 1993, 304 p.

  21. Malenkov A.A. Design solutions selection while developing a system of unmanned flying vehicles in conditions of multi-target uncertainty. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 7-15.

  22. Zinenkov Yu.V., Lukovnikov A.V., Cherkasov A.N. Estimation of the effectiveness of a power plant for a high-altitude unmanned aerial vehicle. Aerospace MAI Journal, 2015, vol. 22, no. 3, pp. 91-102.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI