Computations analysis of a four-link spherical mechanism for a spatial simulator

Machine-building Engineering and Machine Science

Machine science, drive systems and machinery


DOI: 10.34759/vst-2020-2-196-206

Аuthors

Faizov M. R.*, Khabibullin F. F.**

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: faizovmarat92@gmail.com
**e-mail: fanil_arsk@mail.ru

Abstract

This work presents a spherical mechanism with four links, interconnected by rotational kinematic pairs. Based on the spherical mechanism by the type of a crank-and-rocker mechanism, a simulator, shown on the figures of the article, is being developed. While the mechanism kinematics analysis we create the structural scheme with notations of its sides and links. For the convenience, and simplified and advantageous computation it was determined that the opposite situated links would have equal angles of crossing. Two techniques are employed while spherical mechanism computing. The first technique consists in developing a mechanism mathematical model. Additional angles and hinges points of a mechanism, which will be employed in subsequent computations, are accounted for while the mathematical model developing. Since we use two techniques of comparison, we equate both techniques through the same speed and rotation time. Having performed kinematic computation, we specify the complete revolution of rotation of the mechanism. During equations analysis we make to the conclusion that with complete revolution of the leading link the driven links manage performing one-half revolution. While graphs plotting of angular speeds and accelerations maximum and minimum points can be observed. Likewise, the angular acceleration increases three-fold from the angular acceleration. For the complete pattern of computations, we perform analysis of moment of inertia of the mechanism connecting rod, which will be the capsule of the simulator. The centrifugal moment of inertia through the point, located at the center of the connecting rod lengthwise the direction cosines, was obtained for the mathematical model. The moment of inertia of leading and driven links is determined by the simpler technique. For precise computations, the displacement angle of the connecting rod relative to the driven crank in hinges are obtained. The angle of rotation of both connecting rod and its center point on each axis separately is being determined. For convenience, the values of mass and radius are set as constants. In the future, we shall set these values from the definite task of the mechanism. Having plotted the graph of the connecting rod moment of inertia by the two techniques, we obtain several maximum points of loads.

Keywords:

four-link spherical mechanism, spherical crank-and-rocker mechanism, moment of instant rotation, connecting rod moment of inertia

References

  1. Mudrov A.P., Faizov M.R. A spherical simulator motion study. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 182-191.

  2. Pronin M.A., Ryabykina R.V., Smyslov V.I. Experimental study of the aircraft forced vibrations while the engine blade break-away. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 51-60.

  3. Krylov A.A., Moskaev V.A. A technique for fluoroscopic control and analysis of technical condition of aircraft structural elements with honeycomb filler. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 139-146.

  4. Semenova A.S., Zubko A.I. Studying technical condition of the interrotor bearing with the SP180-M vibratory-diagnostic test bench after passing life tests. Aerospace MAI Journal, 2019, vol. 26, no 2, pp. 126-138.

  5. Malenkov A.A. Design solutions selection while developing a system of unmanned flying vehicles in conditions of multi-target uncertainty. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 7-15.

  6. Petukhov V.G., Zhou R. Computing the perturbed impulse trajectory of transferring between the near-earth and near-lunar orbits by the continuation method. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 155-165.

  7. Legaev V.P., Generalov L.K., Galkovskii O.A. An analytical review of existing hypotheses about the physics of friction. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 174-181.

  8. Nikolaeva E.A., Starinova O.L. Application of a heavy spacecraft with low-thrust engines for asteroid deviation from a dangerous trajectory. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 166-174.

  9. Artamonov B.L., Shydakov V.I. Algorithm of transient flight modes performance by convertiplane. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 27-40.

  10. Gaponenko O.V., Gavrin D.S., Sviridova E.S. Structure analysis of the strategic plans of the space-rocket industry development by method of space functional and industrial technologies R&D classification. Aerospace MAI Journal, 2019, vol. 26, no 1, pp. 64-81.

  11. Yarullin M.G., Khabibullin F.F. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2017, vol. 73, no. 3, pp. 105-111.

  12. Yarullin M.G., Khabibullin F.F. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2018, vol. 74, no. 1, pp. 113-118.

  13. Yarullin M.G., Faizov M.R. Materialy VI Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Sovremennoe mashinostroenie. Nauka i obrazovanie», St. Petersburg, Politekhnicheskii universitet, 2017, no. 6, pp. 250-261.

  14. Zarkandi S. Isotropy analysis of spherical mechanisms using an instantaneous-pole based method. Engineering Science and Technology, an International Journal, 2017, vol. 20, no. 1, pp. 240-246. DOI: 10.1016/j.jestch.2016.08

  15. Kong X. Geometric construction and kinematic analysis of a 6R single-loop overconstrained spatial mechanism that has three pairs of revolute joints with intersecting joint axes. Mechanism and Machine Theory, 2016, vol. 102, pp. 196-202. DOI: 10.1016/j.mechmachtheory.2016.04.002

  16. Chen G., Yu W., Wang H., Jiepeng W. Design and kinematic analysis of a spherical parallel manipulator using concurrent planar parallelogram linkages. Proccedings of the Institution of Mechanical Engineers, Part C: Jornal of Mechanical Engineering Science, 2019, vol. 233, no. 7. DOI: 10.1177/0954406218786978

  17. Vardi I., Rubbert L., Bitterli R., Ferrier N., Kahrobaiyan M., Nussbaumer B., Henein S. Theory and design of spherical oscillator mechanisms. Precision Engineering, 2018, vol. 51, pp. 499-513. DOI: 10.1016/j.precisioneng.2017.10.005

  18. Khoshnood H., Hanzaki A.R., Talebi H.A. Kinematics, Singularity Study and Optimization of an Innovative Spherical Parallel Manipulator with Large Workspace. Journal of Intelligent and Robotic Systems, 2018, vol. 92, pp. 309-321. DOI: 10.1007/s10846-017-0752-x

  19. Mazare M., Taghizadeh M., Najafi M.R. Kinematic analysis and design of a 3-DOF translational parallel robot. International journal of Automation and Computing, 2017, vol. 14, no. 4, pp. 432-441.

  20. Petrescu F.I.T. Structural Analysis of Spatial Mechanisms. American Journal of Engineering and Applied Sciences, 2018, vol. 11, no. 2, pp. 852-869. DOI: 10.3844/ajeassp.2018.852.869

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI