Diagnostics algorithm with gas turbine engine mathematical model application

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2020-3-155-166

Аuthors

Ahmed H. S.*, Osipov B. M.**

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: hersh_ise19@mail.ru
**e-mail: obm0099@yandex.ru

Abstract

As a rule, the state parameters, which changing allows detecting the engine failures, change directly neither while operation, nor while bench testing. Usually, the other combination of parameters, called the status signs, is being measured. These are temperature, pressure, fuel and air consumption, rotor rotation frequency etc. A well-defined combination of state parameters corresponds to each combination status signs. The structural diagram of the developed algorithm for the gas turbine engine monitoring and state diagnostics by thermo-gas-dynamic parameters is being performed by the two stages:

1. Determining the engine gas-air channel serviceability.

The results of the engine bench tests are being loaded to the control unit, which main purpose consists in making decision on the engine state in the «serviceable — non-serviceable» form. In the case when the control unit operation results indicate the serviceable condition of the engine gas-air channel control is being transferred to the algorithm input.

2. Determining the serviceable node of the engine gas-air channel.

The main task of the diagnostics unit consists in identifying the non-serviceable assemblies of the engine with the specified probability and computing the state parameters corresponding to them. After printing the diagnostics message, control is being transferred again to the algorithm input, and the monitoring and diagnostics process can be continued.

The measured parameters undergo pre-processing according to the technique being employed at the enterprise. After that, computations according to the mathematical model on the same modes are being performed. The algorithm for monitoring and diagnosing of a gas turbine engine state is based on the assumption of the existence of the adequate non-linear mathematical model of the engine under testing, as well as known values of the state parameters and signs of the reference engine in the diagnostics mode.

In the course of tests of the diagnosed engine, the status signs are being determined, while the state parameters are unknown. In the general case, the dependence of the state signs on the state parameters is nonlinear. Thus, the linear models have to be obtained on a number of basic modes, bearing in mind that deviations from the given mode when using such models are possible within 10%.

Keywords:

aircraft gas turbine engine, technical diagnostics, thermodynamic parameters, mathematical model, diagnostics algorithm, identification methods

References

  1. Ahmed H.S.A., Osipov B.M. Multimode identification to obtain an adequate gas turbine engine model for its diagnosing by thermal-gas dynamic parameters. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 133-143. DOI: 10.34759/vst-2020-1-133-143

  2. Ahmed H.S.A., Osipov B.M. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Aerokosmicheskaya tekhnika, 2020, no. 60, pp. 5-14. DOI: 10.15593/2224-9982/2020.60.01

  3. Aleksandrov Yu.B., Nguyen T.D., Mingazov B.G., Sulaiman A.I. Computational grid impact on numerical computing results of three-dimensional non-stationary swirl flow behind the vane swirler. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 122-132. DOI: 10.34759/vst-2020-1-122-132

  4. Tskhovrebov M.M., Ezrokhi A.Yu., Drygin A.S. Aviatsionnye dvigateli i silovye ustanovki. Sbornik statei, Moscow, Torus Press, 2010, pp. 153–159.

  5. Keba I.V. Diagnostika aviatsionnykh gazoturbinnykh dvigatelei (Diagnostics of aircraft gas turbine engines), Moscow, Transport, 1980, 248 p.

  6. Tikhonov A.N. Doklady Akademii Nauk SSSR, 1965, vol. 163, no. 3, pp. 591-595.

  7. Seber G.A.F., Lee A.J. Linear regression analysis. 2nd edition. Jonh Wiley & Sons, 2003, 582 p.

  8. Himmelblau D.M. Applied nonlinear programming. NY, McGraw-Hill Book Company, 1972, 498 p.

  9. Gel’fand I.M., Vul E.E., Ginzburg S.L., Fedorov Yu.G. Metod ovragov v zadachakh rentgenostrukturnogo analiza (Method of ravines in problems of x-ray structural analysis), Moscow, Nauka, 1966, 76 p.

  10. Akhmedzyanov A.M., Dubravskii N.G., Tunakov A.P. Diagnostika sostoyaniya VRD po termogazodinamicheskim parametram (Diagnostics of the aerojet engine state by thermo-gas dynamic parameters), Moscow, Mashinostroenie, 1983, 206 p.

  11. Shepel’ V.T., Kuz’menko M.L., Sarychev S.V. et al. Nadezhnost’, diagnostika, kontrol’ aviatsionnykh dvigatelei (Reliability, diagnostics, and control of aircraft engines), Rybinsk, RGATA, 2001, 350 p.

  12. Zubko A.I. Perspective vibro-acoustics diagnostic complex for aircraft gas turbine engines bearing assemblies. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 47-55.

  13. Knyazeva V.V., Chubarov O.Yu., Neretin E.S. Fault conditions diagnostic technique for firing trials based on controlled parameters measurements. Aerospace MAI Journal, 2014, vol. 21, no. 5, pp. 106-115.

  14. Kolomentsev A.I., Martirosov D.S. Metody funktsional’noi diagnostiki dvigatelei letatel’nykh apparatov (Methods of aircraft engines functional diagnostics), Moscow, MAI, 2002, 111 p.

  15. Kuz’michev V.S., Tkachenko A.Yu., Filinov E.P. Effect of turbojet engine dimensionality on optimal working process parameters selection. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 40-45.

  16. Pisarenko V.N. Trudy MAI, 2012, no. 59. URL: http://trudymai.ru/eng/published.php?ID=35243

  17. Ezrokhi Yu.A., Khoreva E. A. Estimation of inlet airflow non-uniformity effect on turbofan thrust. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 99-108.

  18. Yampol’skii S.M., Rubinov V.I., Golovin V.Ya. Management of maintenance service and repair of aviation technics during carrying out of the analysis logistical support. Aerospace MAI Journal, 2012, vol. 19, no. 4, pp. 94-99.

  19. Chuyan R.K. Metody matematicheskogo modelirovaniya dvigatelei letatel’nykh apparatov (Methods for aircraft engines mathematical modelling), Moscow, Mashinostroenie, 1988, 287 p.

  20. Tunakov A.P. Metody optimizatsii pri dovodke i proektirovanii gazoturbinnykh dvigatelei (Optimization methods for gas turbine engines development and design), Moscow, Mashinostroenie, 1979, 184 p.

  21. Alexiou A., Baalbergen E.H., Kogenhop O., Mathioudakis K., Arendsen P. Advanced Capabilities for Gas Turbine Engine Performance Simulations. ASME Turbo Expo 2007: Power for Land, Sea and Air (14-17 May 2007, Montreal, Canada). GT2007-27086, pp. 19-28. DOI: 10.1115/GT2007-27086

  22. 22. Kurzke J. About Simplifications in Gas Turbine Performance Calculation. ASME Turbo Expo 2007: Power for Land, Sea and Air (14-17 May 2007, Montreal, Canada). GT2007-27620, pp. 493-501. DOI: 10.1115/GT2007-27620

  23. Boiko L., Karpenko E. Vestnik dvigatelestroeniya, 2007, no. 3(229), pp. 143-146.

  24. Boiko L., Karpenko E. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2008, no. 6, pp. 71-77.

  25. Alifanov O.M., Artyukhin E.A., Nenarokomov A.V. Identifikatsiya matematicheskikh modelei slozhnogo teploobmena (Identification of complex heat transfer mathematical models), Moscow, MAI, 1999, 268 p.

  26. Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations, 1959–2015. Boeing Commercial Airplanes, Seattle, Washington, USA, June 2011.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI