Reverse capacity and aircraft thrust reverse application efficiency

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


DOI: 10.34759/vst-2021-1-7-18

Аuthors

Komov A. A.1*, Echevskii V. V.2**

1. Moscow State Technical University of Civil Aviation, 20, Kronshtadskiy Bulvar, Moscow, 125993, Russia
2. 929th State flight-test center of the defence Ministry named after V.P. Chkalov, Akhtubinsk, Astrakhan region, 416500, Russia

*e-mail: komesk73@yandex.ru
**e-mail: echevskii_vladim@mail.ru

Abstract

The article considers the issues associated with clarification of terms concerning thrust reverse, and requiring refinement in view of formulations and comprehension inaccuracy:

  • factor of reversing;
  • aircraft reverse capacity;
  • optimal value of the engine reverse thrust; < li>reversing device efficiency.

The existing values of the factor of reversing R = = 0,4...0,5 do not indicate the degree of the reversing device (RD) structural perfection, as is commonly believed, but rather their gas-dynamic imperfection, since, significant losses of the total pressure of about 50% arise while the gas flow U-turn in the reversing devices.

The aircraft reverse capacity (Qrev = R/Glw), where R is the reverse thrust value and Glw is the aircraft landing weight, also cannot represent the factor, defining the thrust reversing effectiveness, since excessive reverse capacity leads to the reverse thrust excessiveness and run length increase.

A certain value of optimal reverse thrust, depending on external aerodynamics of the power plant, exists for each airplane type. There should be a possibility of the engine reverse thrust control value over wide range to employ a certain engine for various types of aircraft. Thus, the reverse thrust value depends on the aircraft layout, and it is a belonging to not only the engine, but to the aircraft as well.

Reverse thrust application effectiveness on the aircraft is higher at the reverse jets fluxion optimization, than at the reverse thrust optimization. Efficiency improving of application of the thrust reverse means fulfilling the following three indicators:

  • reducing the aircraft run length;
  • minimizing the reverse thrust value;
  • ensuring engines protectiveness from the entry of reverse jets and foreign objects, thrown-into from the runway surface by the reverse jets.

Keywords:

thrust reverse, engine protectiveness, factor of reverse, optimum level of reverse thrust, aircraft reverse capacity, efficiency factor of thrust reverse application

References

  1. Klestov Yu.M. Trudy TsIAM, 1976, no. 733, 6 p.

  2. Mingaleev G.F., Margulis S.G., Kosterin A.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2016, no. 1, pp. 77-80.

  3. Dvigateli gazoturbinnye aviatsionnye. Terminy i opredeleniya. GOST 23851-79 (Avia cas turbine engine. Terms and definitions, State Standard 23851-79), Moscow, Standarty, 1980, 101 p.

  4. Svyatogorov A.A., Popov K.N., Khvostov N.I. Ustroistva dlya otkloneniya reaktivnoi strui turboreaktivnykh dvigatelei (Devices for deflecting jet stream of turbojet engines), Moscow, Mashinostroenie, 1968, 239 p.

  5. Polyakov V.V. Reversivnye ustroistva silovykh ustanovok s vozdushno-reaktivnymi dvigatelyami (Reverse devices of power plants with air-jet engines), Moscow, VINITI, 1978, vol. 5, 210 p.

  6. Klestov Yu.M. Trudy TsIAM, 1981, no. 941, 3 p.

  7. Gilerson A.G. Effektivnost’ reversivnykh ustroistv pri tormozhenii samoletov (Efficiency of reverse devices when braking aircraft), Moscow, Mashinostroenie, 1995, 187 p.

  8. Inozemtsev A.A., Konyaev E.A., Medvedev V.V., Nerad’ko A.V., Ryassov A.E. Aviatsionnyi dvigatel’ PS-90A (Aviation engine PS-90A), Moscow, Libra-K, 2007, 319 p.

  9. Komov A.A. Nauchnyi vestnik MGTU GA, 2008, no. 134, pp. 45-51.

  10. Ustroistva dlya reversirovaniya reaktivnoi tyagi aviatsionnykh gazoturbinnykh dvigatelei. Obshchie tekhnicheskie trebovaniya. OST 1 01040-82 (Devices for jet thrust reversing of aircraft gas turbine engines. General technical requirements. OST 1 01040-82), 23 p.

  11. Komov A.A., Fadin S.S. Materialy 50 Nauchnykh chtenii pamyati K.E. Tsiolkovskogo «K.E. Tsiolkovskii i etapy razvitiya kosmonavtiki» (15-17 September 2015, Kaluga), Kaluga, Eidos, pp. 216-218.

  12. Komov A.A. Teoreticheskie osnovy i tekhnicheskie resheniya dlya zashchity aviatsionnykh dvigatelei ot popadaniya tverdykh postoronnikh predmetov s poverkhnosti aerodrome (Theoretical basics and technical solutions for aircraft engines protection from the solid foreign objects ingress from the airfield surface), Doctor’s thesis, Moscow, Gosudarstvennyi nauchno-issledovatel’skii institut grazhdanskoi aviatsii, 2005, 400 p.

  13. Margulis S.G. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2008, no. 2, pp. 27-31.

  14. Mingaleev G.F., Margulis S.G., Kosterin A.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2016, no. 1, pp. 77-80.

  15. Po rezul’tatam otsenki bezotkaznosti aviatsionnykh dvigatelei grazhdanskoi aviatsii. Spravka-doklad (From the results of reliability assessment of civil aircraft engines. Reference report), Moscow, GosNII GA, TsIAM, 1991...2002, 22 p.

  16. Voroshilin E.V., Kabanets I.F., Kolokol’tsev N.A., Tarasyuk V.F. Trudy TsAGI. Vypusk 1688, Moscow, Izdatel’skii otdel TsAGI, 1975, 26 p.

  17. Komov A.A. Izvestiya Samarskogo nauchnogo tsentra RAN, 2016, vol. 18, no. 4-3, pp. 592-596.

  18. Gilerson A.G. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 1987, no. 2, pp. 22-26.

  19. Colley R.H., Cutton J.M.D. Thrust Reversers for Civil STOL Aircraft. SAE Transactions, 1973, vol. 82, section 2, pp. 1207-1219. URL: https://www.jstor.org/stable/44717535

  20. Aviatsionnye pravila. Chast’ 33. Normy letnoi godnosti dvigatelei vozdushnykh sudov (Aviation regulations. Part 33. Norms of airworthiness of aircraft engines), Moscow, Aviaizdat, 2018, 86 p.

  21. Komov A.A. IL-76MD-90А aircraft competitiveness recovery. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 7-12.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI