Simulator stand designing for cosmonauts training to perform visual-instrumental observations

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2021-1-115-125

Аuthors

Vasil’eva N. V.*, Dedkova E. V.**, Kutnik I. V.***, Fokin V. E.****, Chub N. A.*****, Yurchenko E. S.******

,

*e-mail: N.Vasileva@gctc.ru
**e-mail: E.Dedkova@gctc.ru
***e-mail: I.Kutnik@gctc.ru
****e-mail: V.Fokin@gctc.ru
*****e-mail: N.Chub@gctc.ru
******e-mail: E.Yurchenko@gctc.ru

Abstract

The International Space Station Russian Segment (the ISS RS) development along with the increasing number of scientific and applied research and experiments performed by cosmonauts onboard the space station actualize the issue of ensuring high-quality training for the scientific program implementation. Visual-instrumental observations of the Earth from space (VIOs) are one of the most informative methods of Earth’s remote probing, employed in manned space exploration. They are intended for observing natural and anthropogenic objects, phenomena occurring in outer space, atmosphere, on ocean and land surface (cyclones formation and typhoons origination, volcanic activity, thunderstorms, forest fires, bio-productive areas in the oceans, and processes in the upper atmosphere).

The experience of domestic cosmonauts training for the VIOs performing is indicative of the importance of cosmonauts training process at all of its stages. Cosmonauts training in this line should represent educational and training process oriented on cosmonauts’ mastering theoretical basics of experimental research on topical problems of earth sciences, studying physiographic specifics of territories and acquiring necessary skills and abilities on searching and identifying the objects under study, as well as practical application of the onboard equipment for remote geosystems’ probing.

Selection of research trends onboard the ISS is based on the basic principles of the Federal Space Program of Russia, foreseeing studying of the Earth surface, Moon studying and exploration, observing various processes and phenomena on both Earth and Lunar surface. This puts forward the requirements to cosmonauts’ training on this trend of their professional activities at all stages of their training for the space flight. These requirements consist, in the first place, in the necessity for the theoretical training, as well as conducting practicum and training using informational resources of specialized simulators that simulate visual situation under conditions of the ISS flight, and flights for aero-visual observations of test sections of land and sea.

Creation of simulator for cosmonauts’ training to perform VIO based on employing digital Earth surface model allows enhancing effectiveness and quality of cosmonauts training to perform the spaceflight onboard the ISS. In the course of design and development of the simulator stand for cosmonauts’ training to perform VIO a comprehensive analysis of specific features and conditions for the VIO performing, characteristics of the scientific equipment in use, as well as available experience of cosmonauts’ training on prospective space programs, including flights to the Moon and near-Lunar space, was performed.

Keywords:

visual-instrumental observations, remote Earth probing, technical means for cosmonaut training, visual situation, observed objects registering, information criteria, operator’s characteristics, operator’s adaptive abilities

References

  1. Federal’naya kosmicheskaya programma Rossii na period 2016-2025 gody, http://www.federalspace.ru

  2. Kuritsin A.A., LonchakovYu.V., Kryuchkov B.I. et al. New Approaches to Cosmonaut Training on the Program of Scientific-Applied Research and Experiments Aboard the ISS Russian Segment. 66th International Astronautical Congress — 2015 (12-16 October 2015; Jerusalem, Israel). Paper No. IAC-15.B3.5.2×28425. URL: IAC-15,B3,5,2,x28425.brief.pdf

  3. Vasiliev V.I., Vlasov P.N., Kud-Sverchkov S.V. et al. Experience in Training Cosmonauts for Visual Instrumental Observations from the ISS Using the Flying Laboratory. 70th International Astronautical Congress — 2019 (21-25 October 2019; Washington D.C., USA). Paper No. IAC-19, B3.5.4×49668.

  4. Kuritsyn A.A., Lonchakov Yu.V., Kornienko M.B. et al. Main results of training and activity of the ISS-43/44/45/46 expedition when carrying out the one-year mission plan aboard the ISS RS. 67th International Astronautical Congress — 2016 (26-30 September 2016; Guadalajara, Mexico). Paper No. IAC-16.B3.5.3×32131.

  5. Vasil’eva N.V., Fokin V.E., Andronov D.P. et al. Distantsionnoe zondirovanie Zemli iz kosmosa v Rossii". Sbornik informatsionnykh materialov (nauchno-prakticheskii zhurnal), 2019, no. 2, pp. 60–66.

  6. Wicht M., Kuffer M. The continuous built-up area extracted from ISS night-time lights to compare the amount of urban green areas across European cities // European Journal of Remote Sensing. 2019. Vol. 52, pp. 58-73. DOI: 10.1080/22797254.2019.1617642

  7. Spahr D., Koch T., Merges D. et al. A chondrule formation experiment aboard the ISS: Experimental set-up and test experiments // Icarus. 2020. Vol. 350, 113898. DOI: 10.1016/j.icarus.2020.113898

  8. Leake S. Reverse Geolocation of Images Taken from the International Space Station Utilizing Various Lightning Datasets // IEEE Aerospace Conference (2-9 March 2019; Big Sky, MT, USA, USA). DOI: 10.1109/AERO.2019.8741774

  9. Neubert T., Ostgaard N., Reglero V. et al. A terrestrial gamma-ray flash and ionospheric ultraviolet emissions powered by lightning // Science. 2019. Vol. 367. Issue 6474, pp. 183-186. DOI: 10.1126/science.aax3872

  10. Li K., Chen Y., Li Y. The Random Forest-Based Method of Fine-Resolution Population Spatialization by Using the International Space Station Nighttime Photography and Social Sensing Data // Remote Sensing Letters. 2018. Vol. 10. No. 10, p. 1650. DOI: 10.3390/rs10101650

  11. Груздов В.В., Колковский Ю.В., Криштопов А.В., Кудря А.И. Новые технологии дистанционного зондирования Земли из космоса. — М.: Техносфера, 2019. — 482 с.

  12. Kuritsyn A.A., Popova E.V., Shcherbinin D.A. The use of computer-based simulators to train cosmonauts for the fulfillment of the program of scientific-applied research // 2018 International Conference on Engineering Technologies and Computer Science (20-21 March 2018; Moscow, Russia). DOI: 10.1109/EnT.2018.00017

  13. Васильев В.И. Васильева Н.В., Фокин В.Е. и др. Применение современных информационных технологий при подготовке космонавтов к выполнению визуально-инструментальных наблюдений земной поверхности с борта РС МКС // Пилотируемые полеты в космос. 2015. № 3(16). С. 83–91.

  14. Боднер В.А., Закиров Р.А., Смирнова И.И. Авиационные тренажеры. — М.: Машиностроение, 1978. — 192 с.

  15. Демин Л.С., Жуковский Ю.Г., Семенин А.П. и др. Автоматизированные обучающие системы профессиональной подготовки операторов летательных аппаратов / Под ред. В.Е. Шукшунова. — М.: Машиностроение, 1986. — 240 с.

  16. Волков С.С. Методика оценки психофизиологического состояния операторов систем специального назначения // Вестник Московского авиационного института. 2019. Т. 26. № 4. С. 174-183. DOI: 10.34759/vst-2019-4-174-183

  17. Емельянов А.А., Малышев В.В., Смольянинов Ю.А., Старков А.В. Формализация задачи оперативного планирования целевого функционирования разнотипных космических аппаратов дистанционного зондирования земли // Труды МАИ. 2017. № 96. URL: http://trudymai.ru/published.php?ID=85921

  18. Макарова С.М., Падалко С.Н., Строгонова Л.Б., Терентьев М.Н. Непрерывный круглосуточный медицинский контроль психофизиологического состояния и координат космонавтов с использованием беспроводной сенсорной сети // Вестник Московского авиационного института. 2012. Т. 19. № 2. С. 177-181.

  19. Разумный Ю.Н. Введение в теорию оптимального проектирования спутниковых систем периодического обзора // Труды МАИ. 2009. № 34. URL: http://trudymai.ru/published.php?ID=8249

  20. Васильев В.И., Попова Е.В., Сабуров П.А. Основы создания и совершенствования технических средств подготовки космонавтов к выполнению научно-прикладных исследований и экспериментов на РС МКС // Пилотируемые полеты в космос. 2020. № 1(34). С. 72-85. DOI: 10.34131/MSF.20.1.72-85

  21. Сельвесюк Н.И., Веселов Ю.Г., Гайденков А.В., Островский А.С. Оценка характеристик обнаружения и распознавания объектов на изображении от специальных оптико-электронных систем наблюдения летного поля // Труды МАИ. 2018. № 103. URL: http://trudymai.ru/published.php?ID=100782

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI