Turbojet engine power increasing by air-cooling at the inlet device

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


DOI: 10.34759/vst-2021-3-130-138

Аuthors

Nikitin I. S.*, Magdin A. G.**, Pripadchev A. D.***, Gorbunov A. A.****

Orenburg State University, OSU, 13, prospect Pobedy, Orenburg, 460018, Russia

*e-mail: zmii0005@gmail.com
**e-mail: magdin.sasha@yandex.ru
***e-mail: apripadchev@mail.ru
****e-mail: gorbynovaleks@mail.ru

Abstract

This publication briefly discusses the possibility of high-quality improvement of the power plant performance, built on the turbofan basis, by injecting water into the inlet device. The probability of this power plant introducing into the space transport system, instead of the first stage at the flight speeds up to six Mach, was considered as well. The expert analysis of the existing research solutions was performed. This technology realization solves the problems of cargo transportation to the International Space Station (ISS). There is a possibility of creating a passenger spacecraft with an immense flight speed in the future.

It is necessary to find a solution, with which the speed characteristics of a turbojet bypass engine with an afterburner are an order of magnitude higher with water injection than without it, and find out the required amount of water necessary for air-cooling to 120°C and 300°C at the engine inlet.

The basic requirements placed for the engine are the low weight and cost at a comparatively high power. Accordingly, the power plant should be operational at all speeds up to six Mach, as well as its operation must meet all the necessary conditions at altitudes within 25-40 km to implement a full flight cycle. The engine herewith should be of the lowest possible specific fuel consumption. Maintenance should not be impeded, since it is necessary to expand the number of airports at which this aircraft can be based, expanding thereby its flight routes.

Water injection of into the flow part increases the engine speed characteristics and its application at the speeds up to six Mach. However, this technology has its minuses as well. Takeoff weight increase and complication of the design negatively affect the flight range and the ease of operation. Due to the cooler injection application, the the power plant device becomes more complicated, which leads to the complication of all technological operations, from manufacturing to setting up the unit.

Nevertheless, the idea is rather promising in practical application, but it requires an utmost high-quality detailed refinement of both the power unit itself and the aircraft.

Keywords:

turbojet engine power increasing, afterburner, inlet device cooling, supersonic aircraft

References

  1. Trefhy С.J. Hypersonic engine technology. NASA Lewis Research Center, October 10, 1996, р. 679.

  2. Skorostnye samolety (High-speed aircraft), Moscow, AST Astrel, 2017, 426 p.

  3. Frolov K.V. (ed) Mashinostroenie. Entsiklopediya. Samolety i vertolety. T. IV-21. Aviatsionnye dvigateli. Kn. 3 (Mashinostroenie. Encyclopedia. Planes and helicopters. Vol. IV-21. Aircraft engines. Book 3), Moscow, Mashinostroenie, 2010, 720 p.

  4. Sklyarova A.P., Gorbunov A.A., Zinenkov Y.V., Agul’nik A.В., Vovk M.Y. Search for optimal power plant to improve maneuverable aircraft efficiency. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 181-191. DOI: 10.34759/vst-2020-4-181-191

  5. Omar H.H., Kuz’michev V.S., Tkachenko A.Y. Efficiency improving of aviation bypass turbojet engines through recuperator application. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 133-146. DOI: 10.34759/vst-2020-4-133-146

  6. Startsev N.I. Konstruktsiya i proektirovanie osnovnykh uzlov i sistem aviatsionnykh dvigatelei i energeticheskikh ustanovok (Design and development of main components and systems of aircraft engines and power plants), Samara, SGAU, 2013, 774 p.

  7. Association of European Airlines: Short-Medium Range Aircraft AEA Requirements. Brussel, AEA, 1989. G(T)5656.

  8. Zhang C., Gümmer V. High temperature heat exchangers for recuperated rotorcraft powerplants. Applied Thermal Engineering, 2019, vol. 154, pp. 548–561. DOI: 10.1016/j.applthermaleng.2019.03.119

  9. Kim M., Ha M.Y., Min J.K. et al. Numerical study on the cross-corrugated primary surface heat exchanger having asymmetric cross-sectional profiles for advanced intercooled-cycle aero engines. International Journal of Heat and Mass Transfer, 2013, vol. 66, pp. 139–153. DOI: 10.1016/j.ijheatmasstransfer.2013.07.017

  10. Lokhtin O.I., Raznoschikov V.V., Aver’kov I.S. A technique for 3D-model developing of a flying vehicle with ducted rocket engine. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 131-139. DOI: 10.34759/vst-2020-2-131-139

  11. Xie G.N., Sundén B., Wang Q.W. Optimization of compact heat exchangers by a genetic algorithm. Applied Thermal Engineering, 2008, vol. 28, no. 8-9, pp. 895–906. DOI: 10.1016/j.applthermaleng.2007.07.008

  12. Osipov E.V., Pripadchev A.D., Belov S.V., Gorbunov A.A., Krivosheev I.A. Kharakteristiki pryamotochnykh vozdushno-reaktivnykh dvigatelei (Characteristics of ramjet engines), Orenburg, OGU, 2018, 128 p.

  13. Fokin D.B., Lukovnikov A.V., Suntsov P.S. Features of mathematical modelling of dual-mode scramjet working process. Aerospace MAI Journal, 2011, vol. 18, no. 2, pp. 137-145.

  14. Egorov I.N., Kretinin G.V., Kostiuk S.S., Leshschenko I.A., Babi U.I. The Methodology of stochastic optimization of parameters and control laws for the aircraft gasturbine engines flow passage components. Journal of Engineering for Gas Turbines and Power, 2001, vol. 123, no. 3, pp. 495-501. DOI: 10.1115/1.1285841

  15. Gorbunov A.A., Pripadchev A.D. Imitatsionnoe modelirovanie v avtomatizirovannom proektirovanii vozdushnykh sudov (Simulation modeling in aircraft automated design), Orenburg, OGU, 2014, 103 p.

  16. Ezrokhi Y.A., Fokin D.B., Nyagin P.V. Mathematical modelling application for characteristics estimation of bypass turbojet with common afterburner. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 99-111. DOI: 10.34759/vst-2020-2-99-111

  17. Filinov E., Tkachenko A., Omar H.H.O., Rybakov V. Increase the Efficiency of a Gas Turbine Unit for Gas Turbine Locomotives by Means of Steam Injection into the Flow Section. The 2nd International Conference on Mechanical, System and Control Engineering (ICMSC 2018), vol. 220. DOI: 10.1051/matecconf/ 201822003010

  18. Bogdanov V.I. Research on realization of pulsating working processes in jet engines. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 100-109.

  19. Bowman C.L., Marien T.V., Felder J.L. Turbo- and hybrid-electrified aircraft propulsion for commercial transport. AIAA/IEEE Electric Aircraft Technologies Symposium EATS’2018 (09-11 July 2018; Cincinnati, Ohio, United States). AIAA 2018- 4984. DOI: 10.2514/6.2018-4984

  20. Egorov I.N., Kretinin G.V., Leshchenko I.A. Optimal design and control of gas-turbine engine components: a multicriteria approach. Aircraft Engineering and Aerospace Technology, 1997, vol. 69, no. 6, pp. 518-526. DOI: 10.1108/00022669710185977

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI