Experimental study on wing adaptive high-lift devices of transport aircraft on takeoff-landing mode

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2021-4-39-47

Аuthors

Pigusov E. A.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

e-mail: evgeniy.pigusov@tsagi.ru

Abstract

At the present stage of aviation development, the main way to the transport aircraft wing load-bearing characteristics improving is application of high-lift devices of the leading and trailing edges of the wing. By now, the high-lift devices of the trailing edge with the Fowler type single-slotted flap became widespread. The endeavor to simplify the high-lift device structure at preserving its effectiveness led to the advent of high-lift device of the wing trailing edge, in which the tilt flap and descending spoiler are being applied. Equipping modern long-distance aircraft with bypass turbojets of high and ultra-high bypass ratio complicates the high-lift device layout in the «low-wing monoplane» scheme. Ensuring the required minimum clearance between the nacelle and runway surface leads to the distance reduction between the wing and the engine, while the wing interaction and the high-lift device interaction with the jet exhaust leads to the drag increase at the cruising flight and noise increase on the takeoff-landing mode.

The article presents the results of experimental study on the application effectiveness of adaptive high-lift device employing the model of aircraft with high-wing monoplane, equipped with two solid propellant engine nacelles of ultra-high bypass ratio.

Aircraft model tests were performed in a subsonic wind tunnel at a flow velocity of V = 40 m/s, corresponding to the Reynolds number value of Re = 0.89·106, on mechanical six-component balance in the range of angles of attack of α = –6 ÷ 24° at zero slip angle. The model tests were conducted for the following options of the flap: δF = 30°, δF = 40° and δF = 30°/20°. The spoiler droop (adaptive element) in the tests deflected by the angles δSD = 0, 8, 12°, the relative height herewith of the gaps between the wing and the flap was 2.5%, 1.2%, 0.6%, respectively.

The above said experimental studies revealed that the adaptive element application together with a single-slot retractable flap allows obtaining high load-bearing characteristics close to more complex double-slotted flaps at lower drag. The adaptive element deflection leads to a significant increase in load-bearing characteristics by 25–45% in the area of takeoff and landing angles of attack α = 8·10°, and maximum wing lift increase coefficient compared to configurations without deflected adaptive element. Disadvantage of adaptive element application consists in critical angle of attack value decrease by  Δα = 2÷4°. However, the lifting force coefficient changing herewith of large angles of attack goes smoothly. Geometric parameters optimization of the adaptive element may reduce the above said negative impact.

Optimization of the geometric parameters of the adaptive element can reduce this negative impact.

Keywords:

adaptive wing high-lift devices, adaptive flap, adaptive element, adaptive spoiler

References

  1. Obert E. Aerodynamic Design of Transport Aircraft. — Delft University of Technology. IOS Press, 2009. — 656 p.
  2. Бюшгенс Г.С. Аэродинамика и динамика полёта магистральных самолётов: Учебник. — Москва-Пекин: Издательский отдел ЦАГИ — Авиа-Издательство КНР, 1995. — 772 с.
  3. Петров А.В. Аэродинамика транспортных самолетов короткого взлета и посадки с энергетическими системами увеличения подъемной силы. — М.: Инновационное машиностроение. — 736 с.
  4. Rudolph P.K.C. High-Lift Systems on Commercial Subsonic Airliners. -National Aeronautics and Space Administration (NASA), Ames Research Center, 1996. NASA-CR 4746. — 150 p.
  5. Wedderspoon J.R. The High-Lift Development of the A320 Aircraft. — International Council of the Aeronautical Sciences, 1986. ICAS-86-2.3.2.
  6. Арджоманди М. Влияние требований к длине взлетно-посадочной полосы на выбор типа механизации магистральных самолетов // Вестник Московского авиационного института. Т. 6. № 1. С. 16-23.
  7. Reckzeh D. Aerodynamic design of the A400M high-lift system // 26th International Congress of the Aeronautical Sciences (14-19 September 2008; Anchorage, Alaska, USA). Paper ICAS 2008-2.7.2. URL: https://icas.org/icas_archive/icas2008/papers/362.pdf
  8. Reckzeh D. Multifunctional wing moveables: design of the A350XBW and the way to future concepts // 29th Congress of International Council of the Aeronautical Sciences (7-12 September 2014, St. Petersburg, Russia). ICAS 2014-0133. URL: https://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/text_2017_05_04_FluegelA350XWB.pdf
  9. Strüber H. The aerodynamic design of the A350 XWB-900 high lift system // 29th Congress of International Council of the Aeronautical Sciences (7-12 September 2014, St. Petersburg, Russia). URL: https://www.icas.org/icas_archive/icas2014/data/papers/2014_0298_paper.pdf
  10. Гусев В.Г. Оптимизация разгрузки крыла среднемагистрального пассажирского самолета // Вестник Московского авиационного института. Т. 23. № 1. С. 19-25.
  11. Брагин Н.Н., Ковалев В.Е., Скоморохов С.И., Слитинская А.Ю. К оценке границы начала бафтинга стреловидного крыла большого удлинения на трансзвуковых скоростях // Вестник Московского авиационного института. Т. 25. № 4. С. 16-27.
  12. Губанова И.А., Крутов А.А., Пигусов Е.А. Исследования по формированию взлётно-посадочной механизации крыла двухфюзеляжного транспортного самолёта // Материалы XXIX научно-технической конференции по аэродинамике (д. Богданиха 01-02 марта 2018): Сборник тезисов докладов. — Жуковский: Изд-во ЦАГИ им. проф. Н.Е. Жуковского, 2018. С.
  13. Dobrzynski W. Almost 40 years of airframe noise research: what did we achieve? // Journal of Aircraft. 2010. Vol. 47. No. 2, pp. 353-367. DOI: 2514/1.44457
  14. Петров A.B., Пигусов Е.А. Экспериментальные исследования эффективности системы обдува струями реактивных двигателей механизированного крыла на модели двухдвигательного транспортного самолета короткого взлета и посадки // Ученые записки ЦАГИ. 2019. Т. 50. № 2. С. 3-16.
  15. Pavlenko O., Petrov A., Pigusov E. Concept of medium twin-engine STOL transport airplane // 31st Congress of the International Council of the Aeronautical Sciences (09-14 September 2018; Belo Horizonte, Brazil). ICAS2018-0104.
  16. Павленко О.В., Петров А.В., Пигусов Е.А. Исследования обтекания высоконесущего крылового профиля с комбинированной энергетической системой увеличения подъемной силы крыла // Вестник Московского авиационного института. 2020 Т. 27. № 4. С. 7-20. DOI: 10.34759/vst-2020-4-7-20
  17. Болсуновский А.Л., Герасимов С.В., Крутов А.А. и др. Концептуальные исследования демонстратора перспективных технологий на базе самолета Як-42 // Материалы XXVII научно-технической конференции по аэродинамике (21–22 апреля 2016; г. Жуковский, Московская область): Сборник тезисов докладов. — Жуковский: Изд-во ЦАГИ им. проф. Н.Е. Жуковского, 2016. С. 49-50.
  18. Radespiel R., Burnazzi M., Casper M., Scholz P. Active Flow control for high lift with steady blowing // The Aeronautical Journal. 2016. Vol. 120. Special Issue 1223, pp. 171–200. DOI: 10.1017/aer.2015.7
  19. Scholz P., Mahmood S.S., Casper M. et al. Design of Active Flow Control at a Drooped Spoiler Configuration // 31st AIAA Applied Aerodynamics Conference (24-27 June 2013; San Diego, CA). DOI: 2514/6.2013-2518
  20. Брутян М.А., Потапчик А.В., Раздобарин А.М., Слитинская А.Ю. Влияние струйных вихрегенераторов на взлетно-посадочные характеристики крыла с предкрылком // Вестник Московского авиационного института. Т. 26. № 1. С. 19-26.

References
  1. Obert E. Aerodynamic Design of Transport Aircraft. Delft University of Technology. IOS Press, 2009, 656 p.
  2. Byushgens G.S. Aerodinamika i dinamika poleta magistral’nykh samoletov (Aerodynamics and flight dynamics of mainline aircraft), Moscow — Pekin, Izdatel’skii otdel TsAGI — Avia-Izdatel’-stvo KNR, 1995, 772 p.
  3. Petrov A.V. Aerodinamika transportnykh samoletov korotkogo vzleta i posadki s energeticheskimi sistemami uvelicheniya pod"emnoi sily (Aerodynamics of short take-off and landing transport aircraft with energy systems for increasing lift), Moscow, Innovatsionnoe mashinostroenie, 2018, 736 p.
  4. Rudolph P.K.C. High-Lift Systems on Commercial Subsonic Airliners. National Aeronautics and Space Administration, Ames Research Center, 1996. NASA-CR 4746, 150 p.
  5. Wedderspoon J.R. The High-Lift Development of the A320 Aircraft. International Council of the Aeronautical Sciences, 1986. ICAS-86-2.3.2.
  6. Arjomandi M. A runway length reshition impact upon aircraft wing devices selection. Aerospace MAI Journal, 1999, vol. 6, no. 1, pp. 16-23.
  7. Reckzeh D. Aerodynamic design of the A400M high-lift system. 26th International Congress of the Aeronautical Sciences (14–19 September 2008; Anchorage, Alaska, USA). Paper ICAS 2008-2.7.2. URL: https://icas.org/icas_archive/icas2008/papers/ 362.pdf
  8. Reckzeh D. Multifunctional wing moveables: design of the A350XBW and the way to future concepts. 29th Congress of International Council of the Aeronautical Sciences (7-12 September 2014, St. Petersburg, Russia). ICAS 2014-0133. URL: https://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/text_2017_ 05_04_FluegelA350XWB.pdf
  9. Strüber H. The aerodynamic design of the A350 XWB-900 high lift system. 29th Congress of International Council of the Aeronautical Sciences (7–12 September 2014, St. Petersburg, Russia). URL: https://www.icas. org/icas_archive/icas2014/data/papers/2014_0298_ paper.pdf
  10. Gusev V.G. Optimization of the wing unloading of a medium-range passenger aircraft. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 19-25.
  11. Bragin N.N., Kovalev V.E., Skomorokhov S.I., Slitinskaya A.Y. On evaluation of buffeting of a swept wing with high aspect ratio at transonic speeds. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 16-27.
  12. Gubanova I.A., Krutov A.A., Pigusov E.A. Materialy XXIX nauchno-tekhnicheskoi konferentsii po aerodinamike (d. Bogdanikha; 01-02 March 2018). Zhukovskii, TsAGI im. prof. N.E. Zhukovskogo, 2018, p. 108.
  13. Dobrzynski W. Almost 40 years of airframe noise research: what did we achieve? Journal of Aircraft, 2010, vol. 47, no. 2, pp. 353-367. DOI: 10.2514/ 1.44457
  14. Petrov A.B., Pigusov E.A. Uchenye zapiski TsAGI, 2019, vol. 50, no. 2, pp. 3-16.
  15. Pavlenko O., Petrov A., Pigusov E. Concept of medium twin-engine STOL transport airplane. 31st Congress of the International Council of the Aeronautical Sciences (09-14 September 2018; Belo Horizonte, Brazil). ICAS2018-0104.
  16. Pavlenko O.V., Petrov A.V., Pigusov E.A. Studies of flow-around of high-lift wing airfoil with combined energy system for the wing lifting force increasing. Aerospace MAI Journal, 2020, vol. 27, no. 4, pp. 7-20. DOI: 10.34759/vst-2020-4-7-20
  17. Bolsunovskii A.L., Gerasimov S.V., Krutov A.A. et al. Materialy XXVII nauchno-tekhnicheskoi konferentsii po aerodinamike (21–22 April 2016; g. Zhukovskii, Moskovskaya oblast’). Zhukovsky, TsAGI im. prof. N.E. Zhukovskogo, 2016, pp. 49-50.
  18. Radespiel R., Burnazzi M., Casper M., Scholz P. Active Flow control for high lift with steady blowing. The Aeronautical Journal, 2016, vol. 120, special Issue 1223, pp. 171–200. DOI: 10.1017/aer.2015.7
  19. Scholz P., Mahmood S.S., Casper M. et al. Design of Active Flow Control at a Drooped Spoiler Configuration. 31st AIAA Applied Aerodynamics Conference (24-27 June 2013; San Diego, CA). DOI: 10.2514/6.2013-2518
  20. Brutyan M.A., Potapchik A.V., Razdobarin A.M., Slitinskaya A.Y. Jet-type vortex generators impact on take-offand landing characteristics of a wing with slats. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 19-26.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI