Drop testing simulation of the mainline aircraft landing gear

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2021-4-106-117

Аuthors

Podruzhin E. G.1*, Zagidulin A. R.1**, Shinkarev D. A.2***

1. Novosibirsk State Technical University, 20, prospect Karla Marksa, Novosibirsk, 630073, Russia
2. Siberian Aeronautical Research Institute named after S.A. Chaplygin, 21, Polzunov St., Novosibirsk, 630051, Russia

*e-mail: planer@craft.nstu.ru
**e-mail: zagidulin@corp.nstu.ru
***e-mail: sibnia_n10@mail.ru

Abstract

For loading reduction while landing the aircraft landing gear are equipped with the damping system, consisting, as a rule, of shock absorbers and tire pneumatics. Various landing gear structural schemes are employed on modern aircraft. Dynamic calculation of the landing gear is one of the most important tasks of the aircraft design. It is advisable to employ numerical simulation method of an arbitrary holonomic system motion of rigid bodies using the Lagrange equations of the first kind to simulate the damping system of the landing gear of various kinematic schemes.

This approach differs from the previously used techniques, such as application of the Lagrange equations of the second kind, written in generalized coordinates by:

  • The versatility of the approach when modeling landing gear struts of various kinematic schemes;
  • Representation of the landing gear strut model in object form, e. as a set of objects: rigid bodies, force factors and mechanical constraints, which allows formalizing and automating the process of a landing gear model developing, and ensures modularity and extensibility of models.

The article considers the landing impact simulation of the mainline plane main landing gear. The landing gear model consists of the three rigid bodies: the wheel, the shock absorber rod, and the shock absorber cylinder, together with the loading on one strut. The model includes seven mechanical constraints. Three force factors are set in the model as well. They are the force of pneumatics compression Pw, the axial force in the shock absorber Psh and the lift force Pl.

The landing impact calculation of the landing gear was performed for the case of absorption at normal operational work. Computational results were being compared with the experimental data of impact tests being performed in the Department of dynamic strength of Siberian Aeronautical Research Institute.

The landing impact parameters of the landing gear calculated by the proposed technique are consistent with the results of drop tests within the experimental error, which confirms the good agreement of the mathematical model with the real object.

Keywords:

aircraft landing gear, landing gear drop test, holonomic system, Lagrange equations of the first kind

References

  1. Kondrashov N.A. Proektirovanie ubirayushchikhsya shassi samoletov (Design of aircraft retractable landing gear), Moscow, Mashinostroenie, 1991, 221 p.
  2. Zhitomirskii G.I. Konstruktsiya samoletov (Aircraft design), Moscow, Innovatsionnoe mashinostroenie, 2018, 416 p.
  3. Ovchinnikov S.Y. Operation features of double-chamber shock-stuts with two kinds of structure. Aerospace MAI Journal, 2008, vol. 15, no. 5, pp. 7-20.
  4. Sidorenko A.S. Dynamic state of a helicopter’s structure at non-stationary movement of the landing spot. Aerospace MAI Journal, 2010, vol. 17, no. 5, pp. 34-42.
  5. Suresh P.S., Sura N.K., Shankar K. Investigation of nonlinear landing gear behavior and dynamic responses on high performance aircraft. Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering, 2019, vol. 233, no. 15, pp. 5674-5688. DOI: 10.1177/0954410019854628
  6. Caputo F., De Luca A., Greco A., Maietta S., Marro A., Apicella A. Investigation on the static and dynamic structural behaviors of a regional aircraft main landing gear by a new numerical methodology. Frattura ed Integrità Strutturale, 2018, vol. 12, no. 43, pp. 191-204. DOI: 10.3221/IGF-ESIS.43.15
  7. Gantmakher F.R. Lektsii po analiticheskoi mekhanike 14. Pappalardo C.M., Guida D. On the Lagrange (Lectures on Analytical Mechanics), Moscow, Nauka, 1966, 300 p.
  8. Baraff D. Linear-Time Dynamics using Lagrange Multipliers. Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH 96, New Orleans, 04–09 August 1996), pp. 137-146. URL: https:// www.cs.cmu.edu/~baraff/papers/sig96.pdf
  9. Anitescu M. Modeling rigid multi body dynamics with contact and friction, PhD thesis, University of Iowa, Iowa City, 1997, 105 p.
  10. Anitescu M., Potra F. A time-stepping method for stiff multibody dynamics with contact and friction. International Journal for Numerical Methods in Engineering, 2002, vol. 55, no. 7, pp. 753-784. DOI: 10.1002/nme.512
  11. Cline M.B. Rigid Body Simulation with Contact and Constraints. Master’s thesis, University of British Columbia, 2002, 102 p.
  12. Cottle R.W., Pang J.S., Stone R.E. The Linear Complementarity Problem. Academic Press, Inc., 1992, 762 p.
  13. Anitescu M., Potra F. Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics, 1997, vol. 14, no. 3, pp. 231-247. DOI: 10.1023/ A:1008292328909
  14. Pappalardo C.M., Guida D. On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Archive of Applied Mechanics, 2017, vol. 88, pp. 419-451. DOI: 10.1007/ s00419-017-1317-y
  15. Pappalardo C.M., Guida D. Dynamic analysis of planar rigid multibody systems modeled using Natural Absolute Coordinates. Applied and Computational Mechanics, 2018, vol. 12, no.1, pp. 73-110. DOI: 10.24132/acm.2018.384
  16. Zagidulin A.R., Podruzhin E.G. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, no. 2(51), pp. 144-154.
  17. Zagidulin A.R., Podruzhin E.G., Rastorguev G.I. Modelling the motion of a non-free system of rigid bodies using the Lagrange equations of the first kind. Journal of Physics: Conference Series, 2017, vol. 894. DOI: 10.1088/1742-6596/894/1/012129
  18. Podruzhin E.G., Rastorguev G.I. Raschet zhidkostno-gazovoi amortizatsii shassi samoleta (Calculation of oleo-pneumatic damping system of the aircraft landing gear), Novosibirsk, NGTU, 2002, 63 p.
  19. Zaitsev V.N., Rudakov V.L. Konstruktsiya i prochnost’ samoletov (Aircraft design and strength), Kiev, Vishcha shkola, 1978, 488 p.
  20. Melik-Zade N.A. Mashinovedenie, 1971, no. 2, pp. 44-50.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI