Method for computation of start-up and windmill modes of gas turbine engines using elements-based non-linear mathematical models

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-1-142-155

Аuthors

Leshchenko I. A.1*, Vovk M. Y.2**, Burov M. N.1***

1. United Engine Corporation “Saturn”, 163, Lenin av., Rybinsk, Yaroslavl region, 152903, Russia
2. Lyulka Experimental Design Bureau, branch of the United Engine Corporation – Ufa Engine Industrial Association, 13, Kasatkina str., Moscow, 129301, Russia

*e-mail: igor.leschenko@yandex.ru
**e-mail: mihail.vovk@okb.umpo.ru
***e-mail: maxim.burov@ues-saturn.ru

Abstract

The article demonstrates that the existing mathematical models for gas turbine en-gines (GTE) thermodynamic computing do not allow accurate simulation of the start-up and windmill operation modes. The reason lies in the impropriety of compressors and turbines characteristics, set in traditional form of their representation for these elements parameters determining under conditions close to the quiescent state when the pressure ratio is close to 1.0.

A method for calculating the start-up and windmill modes of aircraft gas turbine engines using thermodynamic mathematical models is demonstrated. The said method is based on employing the performance maps of compressors and turbines in a transformed form. The authors proposed to use the compressor torque normalized to the total inlet pressure instead of the traditional compressor efficiency. At the compressor operating modes, at which the air pressure is being increased, this parameter is unambiguously derived from the values of pressure ratio, normalized flow rate, adiabatic efficiency and normalized rotation frequency of the compressor. For this reason, the reduced torque is a criterion parameter that ensures the similarity of compressor operating modes. The similar conditions are being ensured for the characteristics of turbines, where, the torque at the turbine shaft normalized to the total pressure in the nozzle assembly throat is proposed to be used as well instead of the turbine efficiency. For the «near-zero» modes, turbines and compressor characteristics recomputed for employing normalized torque instead of efficiency, may be obtained by either extrapolation or computing using state-of-the-art 3D CFD methods.

This method operability for the steady-state modes is demonstrated on the examples of computing the windmill and motoring modes for a two-shaft turbojet engine. The article shows the possibility of a nonlinear mathematical model employing to determine max-imum amount of power that can be taken from the windmilling engine shaft. It was demonstrated as well that it was preferable to swing the high-pressure rotor by the starter, since it allows obtaining noticeably greater air consumption and pressure at the combustion chamber inlet with the same delivered power.

The example of the two-shaft turbojet start-up on the ground with the starter, swinging the high-pressure rotor, as well as in the flight conditions by the wind milling without starter employing, was given for the non-steady-state operating modes.

It is noted in conclusion that the developed method application allows significantly expanding the application scope of element-by-element thermodynamic nonlinear mathe-matical models of gas turbine engines for solving real-life problems in the field of engine build-ing.

Keywords:

gas turbine engine start-up modes, windmill, compressor characteristic, joint work of engine sub-assemblies

References

  1. Daineko V.I. Vestnik dvigatelestroeniya, 2006, no. 3, pp. 17–20.
  2. Zubanov V.M. Metod i sredstva dovodki sistemy zapuska aviatsionnogo gazoturbinnogo dvigatelya na baze vozdushnogo turbostartera (Methods and means of the aviation gas turbine engine starting system fine-tuning based on an air turbo starter). Doctor’s thesis, Samara, SGAU, 2021, 133 p.
  3. Marchukov E.Yu., Leshchenko I.A., Inyukin A.A., Krylov N.D., Vovk M.Yu. ICAM’2020. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii po aviatsionnym dvigatelyam (18–21 May 2021, Mos-cow), Moscow, 2020, vol. 1, pp. 38–42. URL: https://ciam.ru/Tom_1_005.pdf
  4. Barsukov S.I., Kuznetsov V.I. Avtorotatsiya gazoturbinnykh dvigatelei (Autorotation of gas turbine engines), Irkutsk, Irkutskii universitet, 1983, 91 p.
  5. Bakulev V.I., Golubev V.A., Krylov B.A. Teoriya, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok (Theory, calculation and design of aircraft engines and power plants), Moscow, MAI-SATURN, 2003, 688 p.
  6. Kuznetsov V.I. Trudy MNTK «Problemy i perspektivy razvitiya dvigatelestroeniya», Samara, SGAU, 2003. Part II, pp. 116–122.
  7. Alabin M.A., Kats B.M., Litvinov Yu.A. Zapusk aviatsionnykh ga-zoturbinnykh dvigatelei (Aviation gas turbine en-gines starting), Moscow, Mashinostroenie, 1968, 228 p.
  8. Kuznetsov V.I. Omskii nauchnyi vestnik, 2002, no. 20, pp. 123–124.
  9. Ezrokhi Y.A., Gusmanova A.A. On accounting for turbine efficiency, while gas turbine engine parameters determining. Aerospace MAI Journal, 2022, vol. 29, no. 2, pp. 77–87. DOI: 10.34759/vst-2022-2-77-87
  10. Zachos P.K. Gas Turbine Sub-idle Performance Modelling: Altitude Relight and Windmilling. Ph. D. Thesis. UK, Cranfield University School of Engineering, 2010. URI: http://dspace.lib.cranfield.ac.uk/handle/1826/8290
  11. Zachos P.K., Aslanidou I., Pachidis V., Singh R. A Sub-idle Compressor Characteristic Generation Method With Enhanced Physical Background. Journal of Engineering for Gas Turbines and Power, 2011, vol. 133, no. 8: 081702. DOI:10.1115/1.4002820
  12. Jia L., Chen Y. Validation of a Physically Enhanced Sub Idle Compressor Map Extrapolation Method. 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (10–15 April 2016; Honolulu, US).
  13. Righi M., Ferrer-Vidal L.E., Allegretti A., Pachidis V. Low-order models for the calculation of compressor subidle characteristics. 24th Conference of the International Society of Air Breathing Engines (22–27 September 2019; Canberra, Australia). Paper No. 24197.
  14. Ferrer-Vidal L.E., Pachidis V., Tunstall R.J. An enhanced compressor sub-idle map generation method. Global Power and Propulsion Society Forum (10–12 January 2018; Zürich, Switzerland).
  15. Leshchenko I.A., Vovk M.Yu., Burov M.N. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2022, no. 7, pp. 36–44.
  16. Fedorov R.M. Aviatsionnaya promyshlennost’, 1995, no. 3–4, pp. 32–38.
  17. Fedorov R.M. Kharakteristiki osevykh kompressorov (Characteristics of axial compressors), Voronezh, Nauchnaya kniga, 2015, 220 p.
  18. Baturin O.V. Raschetnoe opredelenie kharakteristik stupeni kompressora s pomoshch’yu metodov vychislitel’noi gazovoi dinamiki (Computational determination of compressor stage characteristics by the com-putational gas dynamics methods), Samara, SGAU, 2013, 64 p.
  19. Web-resource, www.thermogte.ru
  20. Mamaev B.I., Ryabov E.K. Materialy 50 nauchno-tekhnicheskoi sessii komissii RAN po problemam gazovykh turbin (20–21 September 2022; Nevskii zavod, Sankt-Peterburg). St-Peterburg, 2003, pp. 13–14.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI