Gas generator twin-shaft compressor working process axisymmetric model

Aeronautical and Space-Rocket Engineering


Аuthors

Matveev V. N.*, Baturin O. V.**, Popov G. M.***, Gorachkin E. S.****, Kudryashov I. A.*****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: matveev.vn@ssau.ru
**e-mail: oleg_baturin@ssau.ru✉
***e-mail: popov@ssau.ru
****e-mail: goriachkin.e.s@ssau.ru
*****e-mail: kudryashov.ia@ssau.ru

Abstract

Axisymmetric models of the turbomachines working process are being employed while performing design variation computations, turbomachines refinement, as well as their characteristics computation and analysis. These models are not as accurate as three-dimensional numerical models, but they possess low response time.

In the known axisymmetric compressor models, the fields of flow parameters at their inlet are usually assumed as uniform, and the curvature of the flow tube lines in the meridional plane is being neglected. Besides, when the axisymmetric models forming, only limited number laws of the flow at the impellers inlet are being employed, and the pressure along the blades height is being assumed constant.

While detailed development of the working process axisymmetric model of the gas generator two-shaft compressor, the authors of the article took a decision to abnegate the above said limitations to increase accuracy and enhance the design engineer possibilities.

When developing a method for an axisymmetric model forming of the two- shaft axial compressor working process, the following methods were appllied:

– the equation of radial equilibrium with regard for the flow lines curvature and the flow velocity in the meridional section;

– universal methods for the flow swirl setting at the impellers inlet along the radius and the pressure distribution along the height of the stage.

Solution of these equations was being performed in conjunction with the other basic equations of the theory of turbomachines by numerical method. During the calculation, a small step was set along the radius from the average diameter towards the sleeve and the periphery.

As the result, the distribution of the height of the flow part in each section at the inlet and outlet of the compressor cascade, as well as in each inter-shaft section, were being determined:

– thermodynamic, gas-dynamic and kinematic flow parameters;

– relative criteria parameters of elementary blade rows of rotor and stator, as well as elementary stages.

When the developed model approbation in the process of the design gas dynamic computation of the gas generator two-stage compressor for a prospective gas turbine engine, all restrictions on the relative criteria parameters values over the entire height of the blade were met. This was succeeded due the flow swirl variation at the rotor wheel inlet, stages pressure distribution along the flow part height, as well as by changing the degree of reactivity, both head and flow coefficients at the average radius. Computational results obtained with the proposed axisymmetric model of the compressor working process allowed finding solutions, reducing the number of the compressor stages of the engine being developed from seven to six with the acceptable efficiency.

Keywords:

twin-shaft axial compressor, axisymmetric thermo-gas-dynamic compressor model, inlet flow non- uniformity, computation at different radii

References

  1. Kholshchevnikov K.V. Teoriya i raschet aviatsionnykh lopatochnykh mashin (Theory and calculation of aircraft shovel machines), Moscow, Mashinostroenie, 1970, 610 p.

  2. Nechaev Yu.N., Fedorov R.M. Teoriya aviatsionnykh gazoturbinnykh dvigatelei. V 2 ch. (Theory of aviation gas turbine engines. In 2 parts), Moscow, Mashinostroenie, 1977. Part 1, 312 p.

  3. Belousov A.N., Musatkin N.F., Rad’ko V.M. Teoriya i raschet aviatsionnykh lopatochnykh mashin (Theory and calculation of aviation shovel machines), Samara, Samarskii Dom pechati, 2003, 336 p.

  4. Fedorov R.M. Kharakteristiki osevykh kompressorov (Characteristics of axial compressors), Voronezh, Nauchnaya kniga, 2015, 220 p.

  5. Prokof’ev A.B., Matveev V.N., Baturin O.V. et al. Matematicheskie modeli potokov v lopatochnykh mashinakh dvigatelei i agregatov letatel’nykh apparatov (Mathematical models of flows in blade machines of engines and aggregates of aircraft), Samara, Samarskii universitet, 2021, 200 p.

  6. Kholshchevnikov K.V., Emin O.N., Mitrokhin V.T. Teoriya i raschet aviatsionnykh lopatochnykh mashin (Theory and calculation of aviation shovel machines), Moscow, Mashinostroenie, 1986, 431 p.

  7. Kopelev S.Z., Tikhonov N.D. Raschet turbin aviatsionnykh dvigatelei (Calculation of turbines of aircraft engines), Moscow, Mashinostroenie, 1974, 268 p.

  8. Sten’kin E.D., Yurin A.V. Vybor osnovnykh parametrov i gazodinamicheskii raschet osevogo mnogostupenchatogo kompressora aviatsionnykh gazoturbinnykh dvigatelei (Selection of basic parameters and gas-dynamic calculation of axial multistage compressor of aviation gas turbine engines), Kuibyshev, Kuibyshevskii aviatsionnyi institut, 1984, 89 p.

  9. Belousov A.N., Musatkin N.F., Rad’ko V.M., Kuz’michev V.S. Proektnyi termogazodinamicheskii raschet osnovnykh parametrov aviatsionnykh lopatochnykh mashin (Design thermogasodynamic calculation of the main parameters of aircraft shovel machines ), Samara, SGAU, 2006, 316 p.

  10. Krivosheev I.A., Rozhkov K.E., Simonov N.B. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2016, no. 2, pp. 75-80.

  11. Inozemtsev A.A., Usanin M.V., Migalev S.V. et al. Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2022, no. 71, pp. 91-98. DOI: 10.15593/2224-9982/2022.70.10

  12. Marchukov E., Egorov I., Kretinin G. et al. Optimization of geometry blade for modern high pressure compressor. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 604. International Conference on Compressors and their Systems (9–11 September 2019; City, University of London). DOI: 10.1088/1757-899X/604/1/012049

  13. Fedechkin K.S., Karonik B.V. Nasosy. Turbiny. Sistemy, 2021, no. 1(38), pp. 47-55.
  14. Mileshin V.I., Semenkin V.G. Computational study of Reynolds number effect on the typical first stage of a high-pressure compressor. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 86-98.

  15. Rozhkova M. V. Studying working process of the low-pressure compressor at the windmill modes. Aerospace MAI Journal, 2023, vol. 30, no. 2, pp. 91-98. DOI: 10.34759/vst-2023-2-91-98

  16. Gel’medov F.Sh., Mileshin V.I., Sachkova N.G. et al. Teploenergetika, 2002, no. 9, pp. 19-28.

  17. Zhdanov I.A. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2009, no. 3-3(19), pp. 76-82.

  18. Tkachenko A.Y. Working fluid mathematical model for the gas turbine engine thermo-gas-dynamic design. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 180-191. DOI: 10.34759/vst-2021-4-180-191

  19. Cumpsty N.A. Compressor aerodynamics. Krieger Publishing Company, 2nd edition, 2004, 552 p.

  20. Koch C.C. Stalling Pressure Rise Capability of Axial Flow Compressor Stages. Journal of Engineering for Power, 1981, no. 103(4), pp. 645-656. DOI: 10.1115/1.3230787

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI