Determination of the Flame Transfer Function in a Model Burner Device

Aeronautical and Space-Rocket Engineering


Аuthors

Gurakov N. I.*, Popov A. D.**, Kolomzarov O. V.***, Morales M. H.****, Zubrilin I. A.*****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: nikgurakov@gmail.com
**e-mail: alexpopov1641@gmail.com
***e-mail: kolomzarov@gmail.com
****e-mail: mariohernandezmo_4_2@hotmail.com
*****e-mail: zubrilin416@mail.ru

Abstract

The article presents the results of the flame transfer function determining by the Large Eddy Simulation (LES) approach as dependence of the ratio of the volumetric heat release pulsations downstream to the flow velocity pulsation at the inlet of the burner device on the flow frequency pulsation at the outlet.

Computational study was performed on a Cambridge Burner model burner device with pre-mixed combustion. A block-structured grid model was developed for combustion processes simulation. Local elements refinement in the supposed flame front area in the model was performed to satisfy the scale criteria for the resolved turbulence.

The LES approach for turbulent flow calculation was used in conjunction with the Flamelet Generated Manifold combustion model. Ethane was used as fuel, and the GRI 3.0 chemical reaction kinetic mechanism was used for oxidation modeling. The time step value for each computation was 1e–05 s.

The LES approach validation was performed using the non-reaction case, and earlier published values of the axial velocity (Vx) and velocity pulsations (Vrms) were used as validation data. A good agreement between computed and experimental data was obtained as the result of validation.

Numerical modeling of combustion processes was conducted at the air-fuel ratio of α = 1.8, and inlet velocity pulsation amplitude of A = 0.1Vb. The pulsation frequency for different cases adopted the following values: f = 0; 160; 250; 300; 350; 400; 600 Hz. The study of the flow without the inlet velocity pulsation effect (f = 0) revealed that the utilized mathematical model represents correctly the both position and shape (length and thickness) of the flame front. The obtained dependence of the heat release pulsations on the frequency demonstrates that with the frequency of the flow velocity pulsation increase at the given amplitude of the velocity pulsation the ratio of the volumetric heat generation decreases (excluding 350 Hz frequency at which local extreme value of the heat release pulsations amplitude appears), which is in agreement with the experimental data on the flame transfer function determining for the burner device of similar configurations.

The authors plan to study the temperature effect at the computational domain inlet on the volumetric heat release pulsation frequency as a further development of their research.

Keywords:

hermoacoustic pulsations, flame transfer function, model burner device, Large Eddy Simulation (LES) approach

References

  1. Radin D.V., Makaryants G.M., Bystrov N.D., Tarasov D.S., Fokin N.I., Ivanovskii A.A., Matveev S.S., Gurakov N.I. Developing mathematical model of acoustic waveguide type probe for pressure ripples measuring in the gas turbine engine combustion chamber. Aerospace MAI Journal, 2022, vol. 29, no. 2, pp. 135-143. DOI: 10.34759/vst-2022-2-135-143
  2. Skiba D.V., Maksimov D.A., Kashapov R.S., Kharisov T.S. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii im. N.D. Kuznetsova (21–23 June 2023; Samara) “Perspektivy razvitiya dvigatelestroeniya”, Samara, Samarskii universitet, 2023, vol. 1, pp. 373-374. URL: https://elibrary.ru/item.asp?id=54699873

  3. Larionov V.M., Zaripov R.G. Avtokolebaniya gaza v ustanovkakh s goreniem (Self-oscillation of gas in combustion plants gorenje), Kazan, Kazanskii gosudarstvennyi tekhnicheskii universitet, 2003, 227 p.

  4. Radin D.V. Razrabotka metodov i geometricheskikh modelei analiza nezapolnennykh prostranstv v zadachakh razmeshcheniya (Development of methods and models of geometric analysis of the blank spaces in the accommodation problems). Abstract of doctor’s thesis, Moscow, MAI, 2011, 24 p.

  5. Radin D.V., Bystrov N.D., Makar'yants G.M. et al. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii im. N.D. Kuznetsova (21–23 June 2023; Samara) “Perspektivy razvitiya dvigatelestroeniya”, Samara, Samarskii universitet, 2023, vol. 1, pp. 392-394. URL: https://elibrary.ru/item.asp?id=54699882

  6. Gerasimenko V.P., Nalesnyi N.B. Vestnik NTU “KHPI”. Sbornik nauchnykh trudov. Kharkiv, NTU “KHPI”, 2006, pp. 53-58.

  7. Sverdlov E.D., Dubovitskii A.N., Lebedev A.B. Fizika goreniya i vzryva, 2022, vol. 58, no. 6, pp. 3-11. DOI: 10.15372/FGV20220601

  8. Zubrilin I.A., Didenko A.A., Dmitriev D.N., Gurakov N.I., Hernandez M.M. Combustion process effect on the swirled flow structure behind a burner of the gas turbine engine combustion chamber. Aerospace MAI Journal, 2019, vol. 26, no. 3, pp. 124-136.

  9. Drobysh M.V., Dubovitskii A.N., Lebedev A.B. et al. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii im. N.D. Kuznetsova (21–23 June 2023; Samara) “Perspektivy razvitiya dvigatelestroeniya”, Samara, Samarskii universitet, 2023, vol. 1, pp. 455-456. URL: https://elibrary.ru/item.asp?id=54699909

  10. Zubrilin I.A., Gurakov N.I., Zubrilin R.A., Matveev S.G. Teploehnergetika, 2017, no. 5, pp. 66-72. DOI: 10.1134/S0040363617050095

  11. Serbin S.I., Mostipanenko A.B., Kozlovskii A.V., Vilkul V.V. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2014, no. 8, pp. 84-88.

  12. Radin D.V., Matveev S.S., Idrisov D.V. Materialy Mezhdunarodnoi molodezhnoi nauchnoi konferentsii (10–11 November 2021; Kazan) “XXV Tupolevskie chteniya (shkola molodykh uchenykh)”, Kazan, IP Sagieva A.R., 2021, vol. II, pp. 98-100. URL: https://elibrary.ru/item.asp?id=48207494

  13. Drobysh M.V., Dubovitskii A.N., Lebedev A.B. et al. Fizika goreniya i vzryva, 2023, Online First. DOI: 10.15372/FGV2022.9273

  14. Hernandez M.M., Zubrilin I.A., Gurakov N.I. et al. Gazoturbinnye tekhnologii, 2020, no. 8(175), pp. 28-32.

  15. Drobysh M.V., Dubovitskii A.N., Lebedev A.B. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (23–25 June 2021; Samara) “Problemy i perspektivy razvitiya dvigatelestroeniya”, Samara, Samarskii universitet, 2021, vol. 2, pp. 136-137. URL: https://elibrary.ru/item.asp?id=47292639

  16. Skiba D.V., Maksimov D.A., Kashapov R.S., Kharisov T.S. Vestnik Samarskogo universiteta. Aehrokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2021, vol. 20, no. 4, pp. 40-51. DOI: 10.18287/2541-7533-2021-20-4-40-51

  17. Volkov K.N., Emel'yanov V.N. Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii (Modeling of large vortices in calculations of turbulent flows), Moscow, Fizmatlit, 2008, 364 p.

  18. Merk M., Silva C.F., Polifke W. et al. Direct Assessment of the Acoustic Scattering Matrix of a Turbulent Swirl Combustor by Combining System Identification, Large Eddy Simulation and Analytical Approaches. Journal of Engineering for Gas Turbines and Power, 2019, vol. 141, no. 2. Paper no. GTP-18-1280. DOI: 10.1115/1.4040731

  19. Xia Y., Laera D., Morgans A.S. et al. Thermoacoustic limit cycle predictions of a pressurised longitudinal industrial gas turbine combustor. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition (11–15 June 2018; Oslo, Norway). DOI: 10.1115/GT2018-75146

  20. Kuhlmann J., Marragou S., Boxx I. et al. LES-based prediction of technically premixed flame dynamics and comparison with perfectly premixed mode. Physics of Fluids, 2022, vol. 34, no. 8: 085125. DOI: 10.1063/5.0098962

  21. Garcia A.M., Le Bras S., Prager J. et al. Large eddy simulation of the dynamics of lean premixed flames using global reaction mechanisms calibrated for CH4–H2 fuel blends. Physics of Fluids, 2022, vol. 34, no. 9: 095105. DOI: 10.1063/5.0098898

  22. Giauque A., Selle L., Gicquel L. et al. System Identification of a Large-Scale Swirled Partially Premixed Combustor Using LES and Measurements. Journal of Turbulence, 2005, vol. 6, no. 21. DOI: 10.1080/14685240512331391985

  23. Pope S.B. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 2004, vol. 6, no. 1, pp. 35–59. DOI: 10.1088/1367-2630/6/1/035

  24. van Oijen J.A., de Goey L.P.H. Modelling of premixed laminar flames using flamelet-generated manifolds. Combustion Science and Technology, 2000, vol. 161, no. 1, pp. 113–137. DOI: 10.1080/00102200008935814

  25. Golden F., Smith G.P., Golden D.M. et al. GRI-Mech 3.0. 2018. URL: http://www.me.berkeley.edu/gri_mech/

  26. Ahmed S.F., Balachandran R., Marchione T., Mastorakos E. Spark ignition of turbulent nonpremixed bluff-body flames. Combustion and Flame, 2007, vol. 151, nos. 1-2, pp. 366–385. DOI: 10.1016/j.combustflame.2007.06.012

  27. Balachandran R., Ayoola B.O., Kaminski C.F. et al. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combustion and Flame, 2005, vol. 143, nos 1–2, pp. 37–55. DOI: 10.1016/j.combustflame.2005.04.009

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI