Analysis of the possibilities of onboard optoelectronic systems designed for the space objects rendezvous parameters measurement within the task of air vehicle orientation determination with the small angles start

Control and navigation systems


Starovoitov E. I.1*, Zubov N. E.2**

1. Radio Engineering Corporation “VEGA”, 34, Kutuzovskiy prospekt, Moscow, 121170, Russia
2. Korolev Rocket and Space Corporation «Energia», 4а, Lenin str., Korolev, Moscow region, 141070, Russia



During the start of various purposes air vehicle it is necessary to determine their orientation within the small deflection angles (from a few to tenths of a degree). Radio devices do not provide the required accuracy of measurement and the use of satellite navigation systems (GLONASS, GPS) on board of certain types air vehicle is not always advisable. To solve this problem it is proposed to use optic-electronic systems (OES) designed for space technology, which include laser radar systems, laser beacons and cameras. Equipments of this type can be used in the field conditions and not only in the special test areas. A review of OES main models is performed. These models are used to determine the orientation of spacecrafts during rendezvous and docking, and their basic technical characteristics including precision measurement of the deviation angles are provided. The use of OES active type (laser radar systems) and the installation of optical response devices on the air vehicle (check points — corner reflectors or laser beacons) to
measure an angular method were substantiated. Expressions for the calculation of the angles of pitch, yaw and roll on two-dimensional images of check points and errors estimation were obtained. Comparison of errors for air vehicles deviation angles determination in the range between 10 and 300m shows that the accuracy of provided measurements coincides with existing analogues. The estimation of interference impact from air vehicles propulsion torches on useful signal power and OES range of measurements was carried out. Realization options for OES based on semiconductor laser diodes and photo-integrated matrix based on CCD or CMOS, and also with optic-mechanical scanning by narrow beam and with photo detector based on an avalanche photodiode was considered. The performed calculations show that the use of these technical solutions provides the range of OES measurements up to 300 m. Further assessment of OES capabilities will require consideration of factors determining the atmospheric trace state within measurements area.


optoelectronic system, air vehicle, orientation, goniometer, laser, trajectory measurements


  1. Noskov V.P., Noskov A.V. Izvestiya Taganrogskogo radiotekhnicheskogo universiteta, 2006, vol.58, no. 3, pp. 184-190.
  2. Fedoseev V.I. Opticheskiy zhurnal, 1996, no. 7, pp. 66- 70.
  3. Polites M.E. An assessment of the Technology of automated rendezvous and Capture in Space. Marshall Space Flight Center, Alabama, 2014, available at: NASADesignSPs/tp208528.pdf
  4. Howard R.T., Heaton A.F., Pinson R.M., Carrington C.L., Lee J.E., Robertson B.A., Spenser S.H., Johnson J.E. The Advanced Video Guidance Sensor: Orbital Express and the Next Generation, 2012, available at: downloads135/doc/fileformat/ 573936/measure.pdf
  5. Roux Y., Da Cunha P. The GNG measurement system for the automated transfer vehicle, 2014, available at: http://
  6. Videometer, 2014, available at: VDM.pdf
  7. Rendezvous-and Docking Sensor RVS, 2014, available at: pdf/Data%20Sheet%20RVS.pdf
  8. Starovoitov E.I. Nauka i obrazovanie, 2013, no. 11, available at: (accessed 04.02.2014)
  9. Bachevskiy S.V. Voprosy radioelektroniki, ser. Tekhnika televideniya, 2010, release 1. pp. 57-66.
  10. Azi S.N., Bachevskiy S.V. Voprosy radioelektroniki, ser. Tekhnika televideniya, 2009, release 1. pp. 65-84.
  11. Temartsev D.A. Aviakosmicheskoe priborostroenie, 2004, no. 1, pp. 58-64.
  12. Boguslavsky A.A., Sazonov V.V., Sokolov S.M., Smirnov A.I., Saigiraev Kh.S. Avtomaticheskiy monitoring stykovki kosmicheskogo korablya s orbitalnoy stantsiey po videoinformatsii (Automatic vision-based monitoring of a spacecraft docking to the orbital station), Moscow, Keldysh Institute of Applied Mathematics Preprint, 2004, no. 74, 23 p. 
  13. Blokhinov Yu.B. Izvestiya vysshikh uchebnykh zavedeniy. Geodeziya i aerofotosemka, 2011, no. 2, pp. 13-19.
  14. Ivanov D.S., Sakovich M.A., Ovchinnikov M.Yu., Karpenko S.O. Materialy tretei vserossiiskoi nauchno- tekhnicheskoi konferentsii «Sovremennye problemy orientatsii i navigatsii kosmicheskikh apparatov», Moscow, IKI RAN, 2012, pp. 104-113.
  15. Vetyugov V.A., Goryushkin S.V., Chepkov O.F. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2008, vol.8, no. 5. pp. 18-22.
  16. Ageev A.M., Bocharov A.S., Demchuk V.A., Konotop V.I., Litvin D.B., Ozerov Ye.V. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2010, vol. 6, no. 8, pp. 52-54.
  17. Pimenov B.P., Ageev A.A. Patent RU 2093432, 20.10.1997.
  18. Semenov A.E., Kryukov E.V., Rykovanov D.P., Semenov D.A. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki., 2010, vol. 104, no. 3, pp. 92-102.
  19. Starovoitov E.I. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2011, release 5, part 1, pp. 162-168.
  20. Starovoitov E.I., Vorobev S.A. Radiotekhnika, 2011, no. 6, pp. 50-55.
  21. Godunov V.A., Stepanov D.V., Tretyakov D.A. Metelkina T.V., Zhelamskii M.V. Aviakosmicheskoe priborostroenie, 2003, no. 5, pp. 15-20.
  22. Glushchenko V.T. Opticheskii zhurnal, 2012, vol. 79, no. 12, pp. 56-61.
  23. Fedoseev V.I., Kolosov M.P. Optiko-elektronnye pribory orientatsii i navigatsii kosmicheskikh apparatov (Optic- electronic devices of spacecraft orientation and navigation. The manual for high schools), Moscow, Logos. 2007. 248 p. 
  24. Formozov B.N. Aerokosmicheskie fotopriemnye ustroistva vidimogo i infrakrasnogo diapazonov (Aerospace photo detectors of visible and infrared bands), St.-Petersburg, Voenmekh, 2004, 127 p. 
  25. Malashin M.S., Kaminskiy R.P., Borisov Yu.B. Osnovy proektirovaniya lazernykh lokatsionnykh system (Bases for laser location systems design). Moscow, Vysshaya shkola, 1983, 207 p. 
  26. Starovoitov E.I., Savchuk D.V. Kosmicheskaya tekhnika i tekhnologii, 2013, no. 1, pp. 38-43. — informational site of MAI

Copyright © 1994-2023 by MAI