Schemes of counting of far IR photons in the context of problems of all-weather locating of distant space objects

Aeronautical and Space-Rocket Engineering

Rocket and space engineering


Аuthors

Buyakas V. I.*, Dresvyannikov M. A., Zherikhina L. N.**, Tskhovrebov A. M.***

Leading Engineer of the Astrospace Center S.A. Lebedeva, 53, Leninskii av., Moscow, 119991, Russia

*e-mail: bujakas@yandex.ru
**e-mail: zherikh@sci.lebedev.ru
***e-mail: tshovrebov@yandex.ru

Abstract

In the context of problem of all-weather location of distant space objects four original detection schemes of far IR radiation, approaching by their sensibility to the level, allowing to use them in photon counting regime, are described.The first scheme is actually an upgrade of technique of the superheterodyne transfer of quantum fr om far IR to the visible range, wh ere photon counting is produced by a usual photomultiplier or APD (avalanche photodiode). The design of Up-converter considered assumes that nonlinear crystal-mixer is placed within the resonator of the single laser block. The second scheme of registration of far IR is based on directly biased light-emitting diode when the current is yet insufficient for radiation generation. Realized experiments allowed to observe photo response of such a system on radiation with energy below red edge of internal photoelectric effect. Two last schemes exploit cryogenics: in the first one far IR photon counting is assumed to perform using a number of desorbed helium atoms which are registered, and in the second — a number of unpaired spins in antiferromagnetic, the magnetic moment of which is measured by a SQUID. In both ways the effect has a nonbolometric character that provides speed sufficient for an application of such schemes in pulsed location systems. In the first case the nonbolometrisity of the effect is the consequence of stability of temperature value, corresponding to the first order phase transition, when all incoming power is spent not at material heating but exclusively on transforming the matter from one aggregation state into another. In the second case nonbolometrisity is achieved due to direct resonance action of far IR radiation on antiferromagnetic, resulting in flip-flop of spins and appearing of magnetic response registered by the quantum interferometer.

In conclusion two possible registration schemes of near space small objects that do not use the location in ordinary sense are being considered: photographing in 10 µm range using a CdHgTe matrix and pulsed CO2 laser with transverse pumping (TEA ) as a megawatt flash; space gravi-exploration using the system SQUID-magnetostrictor, offered initially as an ultrasensitive gravitational wave detector.

Keywords:

far IR, TEA-laser, lidar, space object, asteroid

References

  1. Strett Dzh.V. (Lord Relei) Volnovaya teoriya sveta (Wave theory of light), Moscow/Leningrad, Gostekhizdat, 1940, 208 p.
  2. Protopopov V.V., Ustinov N.D. Infrakrasnye lazernye lokatsionnye sistemy (Infrared laser radar system), Moscow, Voenizdat, 1987, 174 p.
  3. Zvelto O. Fizika lazerov (Laser Physics), Moscow, Mir, 1979, 560 p.
  4. Khramov Yu.A. Fiziki: Biograficheskii spravochnik (Physics: a Biographical directory), Moscow, Nauka, 1983, 400 p.
  5. Golovashkin A.I., Zherikhin A.N., Zherikhina L.N., Kuleshova G.V., Tskhovrebov A.M. Kratkie soobshcheniya po fizike (Brief reports in physics), 2004, no. 12, pp. 42-51.
  6. Golovashkin A.I., Zherikhin A.N. Zherikhina L.N. Kuleshova G.V., Tskhovrebov A.M. Poverkhnost. Fizika, khimiya, mekhanika (Surface: physics, chemistry, mechanics), 2005, no. 10, pp. 3-15.
  7. Pletnev N.V., Appolonov V.V., Sorochenko V.R. Pribory i tekhnika eksperimenta (Instrument and experiment technics),2009, no. 3, pp. 110-119.
  8. Kriksunov L.Z. Spravochnik po osnovam infrakrasnoi tekhniki (Handbook of fundamentals for infrared technology), Moscow, Sovetskoe radio, 1978, 400 p.
  9. Malkov M.P., Danilov I.B., Zeldovich A.G., Fradkov A.B. Spravochnik po fiziko-tekhnicheskim osnovam glubokogo okhlazhdeniya (Handbook of physical- technical fundamentals of deep cooling), Moscow, Gosudarstvennoe energeticheskoe izdatelstvo, 1963, 432 p.
  10. Golovashkin A.I., Izmailov G.N., Zherikhina L.N., Kuleshova G.V., Tskhovrebov A.M. Kvantovaya elektronika (Quantum electronics),2006, vol. 36, no. 12, pp. 1168-1175.
  11. Golovashkin A.I., Izmailov G.N., Kuleshova G.V., Khanh T.Q., Tskhovrebov A.M., Zherikhina L.N. Magnetic calorimeter for registration of small energy release, Europe Physics Journal B, 2007, vol. 58(3), pp. 243-249.
  12. Golovashkin A.I., Izmailov G.N., Kuleshova G.V., Ryabov V.A., Tskhovrebov A.M., Zherikhina L.N. Dark Matter Particle Detection System SQUID — Magnetic Calorimeter, American Journal of Modern Physics, 2013, vol. 2(4), pp. 208-216.
  13. Golovashkin A.I., Zherikhina L.N., Tskhovrebov A.M. Prikladnaya fizika (Applied physics), 2003, no. 6, pp. 27- 34.
  14. Ryabov V.A., Tsarev V.A., Tskhovrebov A.M. Uspekhi fizicheskikh nauk (Physics-Uspekhi), 2008, vol. 178, no. 11, pp. 1129-1164.
  15. Lounasmaa O.V. Printsipy i metody polucheniya temperature nizhe 1К (Principles and methods of obtaining temperatures below 1К), Moscow, Mir, 1977, 356 p.
  16. Golovashkin A.I., Elenskii V.G., Likharev K.K. Effekt Dzhozefsona i ego primenenie (The Josephson effect and its application), Moscow, Nauka, 1983, 222 p.
  17. Clarke J., Braginski A.I. (eds.) The SQUID Handbook, Wiley, 2006, vol. 1 — 414 p.,vol. 2 — 475 p.
  18. Zаvоiskу E.K. Spin-magnetic resonance in paramagnetics, Journal of Physics (USSR), 1945, vol.9, no. 3, p. 245.
  19. Zaiman Dzh. Printsipy teorii tverdogo tela (Principles of theory of solids), Moscow, Mir, 1966, 472 p.
  20. Izmailov G.N. Can the Heavens Give Us Desired Wealth? (An energetic aspect), Proceedings of Aerotech II-2007 20-21 June (2007) Kuala-Lumpur, pp. 115-120.
  21. Buyakas V.I., Erokhin A.I., Tskhovrebov A.M., Molotov I.E., Yudin A.N. Trudy mezhdunarodnoi konferentsii CAD/CAM/PDM-2012, IPU, 2013, available at: http:/ /lab18.ipu.ru/projects/conf2013/2/14.htm
  22. Robinson F.N.Kh. Shumy I fluktuatsii v elektronnykhskhemakh i tsepyakh (Noise and fluctuations in electronic circuitry and circuits), Moscow, Atomizdat, 1980, 256 p.
  23. . Golovashkin A.I., Gudenko A.V., Zherikhina L.N., Ivanenko O.M., Mitsen K.Yu., Tskhovrebov A.M. Fluctuation limit of measu rements of the relative elongation of a magnetostrictive cylinder, JETR Letters, 1994, vol. 60, no. 8, pp. 612-616.
  24. Izmailov G.N., Zherikhina L.N., Ryabov V.A., Tskhovrebov A.M. The Nature and Feasibility of Laboratory Registration using SQUID-Magnetostrictor System. inart.collection «Dark Energy: Theories, Developments, and Implications». Editors: Lefebvre K., Garcia R., 2010, Nova Science Publishers, pp. 1-19.
  25. Golovashkin A.I, Zherikhina L.N., Tskhovrebov A.M., Izmailov G.N. Kvantovaya elektronika (Quantum electronics), 2012, vol. 42, pp. 1140-1146.
  26. Belov K.P. Magnitostriktsionnye yavleniya i ikh tekhnicheskie prilozheniya (Magnetostrictive phenomena and their technological applications), Moscow, Nauka, 1987, 160 p.
  27. Izmailov G.N. Minimal black holes and their stability, Proc. of Intern. Scient. Meeting. Moscow 1-4 July, 2013, Moscow, BMTSU, 2013, pp. 121-128.
  28. Veselov K.E., Sagitov M.U. Gravimetricheskaya razvedka (Gravimetric exploration), Moscow, Nedra, 1968, 512 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI