Aeronautical and Space-Rocket Engineering
Dynamics, ballistics, flying vehicles movement control
Аuthors
Institute of Management, Economics and Finance Kazan Federal University, KFU, 4, Butlerova str., Kazan, 420012, Russia
e-mail: VLVorontsova@yandex.ru
Abstract
The study of aerodynamics influence on the motion of an artificial cluster-satellite of two bodies is stipulated by the expansion of large extent orbital tether systems field of application. For such large space systems, aerodynamic effects are of a great significance. We have investigated the behavior of limit cycle for an equation of relative motion orbital cluster of two bodies considering impact of gravitational effect, aerodynamic pressure, airborne gradient and dissipative factors, depending on the growth of aerodynamic parameter a. We use the equations of interconnected motion with allowance for the forces of gravitational gradient and aerodynamic factors. We study the effect of aerodynamic parameters on the behavior of limit cycles. To carry out the research we implemented well-known methods of nonlinear mechanics: of Lagrange equations of the first kind method, phase plane method; points mapping method; theory of motion stability methods.
The main qualitative effect of the rotational motion of the satellite in an elliptical orbit is the possibility motion chaotization. The atmosphere creates especially strongly effects the beginning of chaotization due to the exponential change of its density in an elliptical orbit. Even relatively small eccentricities can enable strong chaotization.
For eccentricity values e = 0.001 and small values of the aerodynamic parameter a limit cycles are absent. The increase of aerodynamic parameter a leads to the emergence of limit cycles. For values of a fr om 4 to 45 there a limit cycle exists. The value of (( to which all points on the phase portrait roll down drops from 29.6 to 14.5. With a further increase of the parameter a (a > 45) lim it cycles disappear.
Keywords:
dynamics of space systems, qualitative theory of dynamical systems, orbital cluster of bodies, tether systems, limit cycles, phase space, aerodynamic parameter, orbit eccentricityReferences
-
Lang D.D., Nolting R.R. Operations with tethered space vehicles. NASA Special Publications, Houston, Texas, 1967, pp. 55-66.
-
Steiner W., Steindl A., Troger H. Dynamics of a space satellite system with two rigid end bodies.Fourth International Conference on tether in Space, Washington, 1995, pp. 133-148.
-
Bourov A., Troger H. On relative equilibria of tethered gyrostat in a central Newtonian field. Journal Mathematics and Mechanics. 1997, vol. 77, pp. 53-54.
-
Crellin B., Janssens F., Poelaert D., Steiner W., Troger H. On balance, variational formulations of the equations of motion of a body deploying along a cable. Journal of Applied Mechanics, 1997, vol. 64, no. 6, pp. 359-374.
-
Krupa M., Schagerl M., Steindl A., Troger H. Relative equilibria of tethered satellite systems and their stability. Journal Mathematics and Mechanics, 1996, vol. 76, pp. 329-332.
-
Steiner W., Steindl A., Troger H. Center manifold approach to the control of a tethered satellite system. Applied Mathematics and Computation, 1995, vol. 70, pp. 315-327.
-
Games H.G., Yau A.W., Tyc G. Space research in the bicept experiment. Fourth International Conference on tether in Space, Washington, 1995, pp. 124-127.
-
Alpatov A.P., Dranovskiy V.I., Khoroshilov V.S., Pirozhenko A.V., Zakrzhevskii A.E. Resarch of dynamics of space cable systems stabilized by rotation. In Book of abstracts. 48-th International Astronautic Congress, Turin, 1997, pp.13.
-
Tyc G., Rup C.C., Jablonski A.M., Vigneron F.R. A shuttle deployed tether technology demonstration mission to serve canadian and united states needs. Fourth International Conference on tether in Space, Washington, 1995, pp.178-180.
-
Alpatov A.P., Dranovskii V.I., Zakrzhevskii A.E., Pirozhenko A.V., Khoroshilov V.S. Kosmicheskaya nauka i tekhnologiya, 1997, vol. 3, no. 5/6, pp. 12-22.
-
Beletskii V.V. Dvizhenie iskusstvennogo sputnik otnositelno tsentra mass (Artificial satellite motion relative to the center of mass), Мoscow, Nauka, 1965, 416 p.
-
Beletskii V.V. Ocherki o dvizhenii kosmicheskikh tel (Essays about cosmic bodies motion). Moscow, Nauka, 1977, 432 p.
-
Beletskii V.V., Yanshin A.M. Vliyanie aerodinamicheskikh sil na vrashchatelnoe dvizhenie iskusstvennykh sputnikov (The influence of aerodynamic forces on the rotational motion of artificial satellites). Kiev, Naukova dumka, 1984, 187 p.
-
Wisdom J., Peale S.J., Mignard F. The chaotic rotation of Hyperion. Icarus, 1984, vol. 58, no. 2, pp. 137-152.
-
Wisdom J. Rotational dynamics of irregularly shaped natural satellites. Astronomical Journal, 1987, vol. 94, no. 5, pp. 1350-1360.
-
Beletskii V.V., Pivovarov M.I., Starostin E.L. Regular and chaotic motion in applied dynamics of a rigid body. Chaos, 1996, vol. 6, no. 2, pp. 155-166.
-
Beletskii V.V., Vorontsova V.L. Vestnik Moskovskogo Universiteta. Seriya Matematika. Mekhanika, 2000, no. 5, pp. 35-39.
-
Beletskii V.V., Pivovarov M.L. Prikladnaya matematika i mekhanika, 2000, no. 4, pp. 691-700.
-
Alpatov A.P., Beletskii V.V., Dranovskii V.I., Zakrzhevskii A.E., Pirozhenko A.V., Troger G., Khoroshilov V.S. Dinamika kosmicheskikh sistem s trosovymi i sharnirnymi soedineniyami (Dynamics of space systems with tethers and joints), Moscow — Izhevsk: NITs Regulyarnaya i khaoticheskaya dinamika, Institut komputernykh issledovanii, 2007, 557 p.
-
Burov A.A., Kosenko I.I. Doklady Akademii Nauk, 2011, vol. 440, no. 6, pp. 1-5.
-
Barbashin E.A., Tabueva V.A. Dinamicheskie sistemy s tsilindricheskim fazovym prostranstvom (Dynamical systems in a cylindrical phase space), Мoscow, Nauka, 1969, 300 p.
-
Pontryagin L.S. Nepreryvnye gruppy (Continuous groups), Moscow, Gostehizdat, 1954, 250 p.
-
Aisagaliev S.A., Aipanov Sh.A., Imankul T.Sh. Matematicheskii zhurnal, 2011, vol. 11, no. 3-4, pp. 14-24.
-
Vorontsova V.L. Vestnik SGU, 2011, no. 77(1), pp. 304-306.
-
Vorontsova V.L. Vestnik Moskovskogo aviatsionnogo instituta, 2013, vol. 20, no. 1, pp. 255-258.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |