Program-methodic system for the impact of guided aircraft missile of «air-to-air» class technical state on its guidance accuracy

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Zakharov I. V.1*, Trubnikov A. A.2**, Reshetnikov D. A.2***

1. ,
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: il-ya-zakharov@yandex.ru
**e-mail: a-trubnikov@inbox.ru
***e-mail: grapler@yandex.ru

Abstract

Reference [1] presents scientific and methodological basics for technical condition (TC) assessment of a guided aircraft air-to-air missile (GAAAM) guidance-system (GS). For this purpose new concepts of functional hardware capabilities and military potential of the missile were introduced, including the aggregate quality indicators, determinant of which is the missile terminal miss.

This article describes the tool and methodology to study and quantify the influence of GAAAM TC on the accuracy of its guidance, which can be used to implement the methodology described in Reference [1].

As a research tool the program-methodical system (PMS) was developed. Fundamentally, this system realizes complex mathematical models simulating targeting an aerial target (TAT).

With that, on the assumption of the volume and the depth of problems at hand, synthesis of the PMS and methodology for the impact assessment of the GAAAM TC on the accuracy of its targeting, involves the solution of a given problem in restricted sense and in a wide one.

The synthesis of this problem in a restricted sense is regarded as the accessible development tools (analytical tools) to study the required process or a specific object in a small area of varied parameters. In this form a similar PMS and the methodology were developed in [2]. Further it was tested in the thesis and several research papers.

In a wide sense, synthesis of the estimation method involves solving of a set of interrelated problems within the framework of the multifactor experiment (MFE) with the large dimensionality of initial data for objects research and processes investigated. It includes a wide range of initial simulation conditions and the simultaneous action of several different factors affecting the results of the MFE.

New modules were introduced in the developed PMS, including a module for the initial conditions setting for mathematical simulation of the guidance process based on approximate analytical dependencies. In addition, the additional cross-feedback connections were introduced and also a set of competing models were considered.

The outcome of the experiment caused by a number of other factors independent from each. Among them, we can highlight the following factors: types of used guided aircraft missiles (GAM); current technical condition of a used one, the type of a target and its flight performance (FP); the type and nature of enemy air target counter-effort to attacking missile; the GAM carrier type and its performance; the nature of air vehicle combat and the engagement nature with the target; the specific initial conditions of the GAM start-up onto the target.

In this regard, in PMS we applied five classes of modules to generate the initial MFE data, implemented by databases technologies: modules, determining technical condition of subsystems of GAMs; the modules that define the type of the target; the modules that define the GAM carrier type; the modules that form the initial conditions of combat use, the modules forming the end of the MFE simulation.

The PMS is based on a complex of mathematical models for GAM aiming at a target process, including a model of a target movement, the model of a GAM as an object of control (OC), as well as a set of models of the GAM guidance system as OC. The specified models form a guidance loop, closed through the equations of the relative motion of the missile and a target (RMMT). Complex mathematical models of the GAM aiming process at the targets is realized in the programming environment Borland C++.

Based on simulation results obtained with PMS for fixed conditions of combat use of GAM we obtained GAM and target motion trajectories; time depending functions of the change of the phase coordinates of the process of missiles homing at the target; 3D-functions of the quality indicator dependence from the two varied control parameter.

Keywords:

guidance system, guidance process, guidance accuracy, initial conditions of combat application, operating conditions, control parameters, quality indicator, the mathematical model, mathematical modeling, multifactor experiment

References

  1. Zakharov I.V., Trubnikov A.A., Reshetnikov D.A. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 2, pp. 66-73.

  2. Zakharov I.V., Sokolov O.V. Trudy GosNIIAS. Voprosy avioniki, 2001, no. 1(8), pp. 53-60.

  3. Golubev I.S., Svetlov V.G. Proektirovanie zenitnykh upravlyaemykh raket (Designing anti-aircraft guided missiles), Moscow, MAI, 1999, 728 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI