Specifics of application of minimax operations for aircraft lateral movement control

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Repin A. I.*, Kashkina T. I.

Moscow State University of Engineering and Computer Science, 20, Stromynka str., Moscow, 107996, Russia

*e-mail: airepin@mail.ru

Abstract

The safety of aircraft landing on approaching the landing strip in difficult weather conditions is associated not only with the need to create light and strong devices, but also, mainly, the search for new principles (methods and tools) for building control systems, since the aircraft landing is the most laborious process and largely unsolved problem to date.

Safety upgrading is achieved by control automating while approaching the landing strip and aircraft landing. It is obvious that the use of standard methods for modeling, analyzing and managing of complex multi-level systems becomes less possible with complexity increasing. In this situation, fuzzy control methods are the most applicable to such complex technological processes as the control of aircraft landing.

Aircraft control systems based on the principles of fuzzy logic, allow increase the course stability of the aircraft. In such situations, energy consumption is reduced and the response time of the system is increased simultaneously. Besides, it is possible to make the system as a whole more stable to the effect of disturbing factors compared to the traditional aircraft automatic control systems.

Practice shows that the operator, in conditions of good meteorological visibility range, satisfactorily lands an aircraft without the help of a program control system and a trajectory control system.

In the case of poor meteorological visibility, with the lack of visual contact with the runway strip, radio technical, optoelectronic and inertial navigation systems are employed for aircraft landing. They are used in the control system as sensors of primary information for the automatic control system (ACS). Such systems are termed course-glissade systems. They determine the position of an aircraft on the course and on the glide path.

But, even with modern control systems provision equipped with computerized hardware and software systems, which functionality is largely determined by software, applied diagnostic models, information processing algorithms, etc., the final decision-making is delegated to the human, which is a consequence of the insufficient effectiveness of diagnostic models, reflecting real ACS and the environment.

Thus, the structure schemes of similar systems in the following stages should include the links with fuzzy transfer function WN(p) instead of links with functions Wo(p ) or Wa(p ) . To this effect, it is rational to implement the of the operator's behavior in such a situation as the basis for the fuzzy controller synthesis. In this situation, namely the methods of fuzzy control are the most applicable to such complex technological processes that will allow reduce by 10 times the duration of the longitudinal and horizontal movements' transients. The pilot in this case operates as a controller for the state of the control system.

Thus, the task consisted in developing models and algorithms for the design of control systems based on the methods of the theory of fuzzy-multiple apparatus.

A program in the C++ programming language was created to reproduce the min and max operations in on-board systems for automatic control of the aircraft lateral movement with applicaiton of fuzzy logic.

Keywords:

block diagram, control algorithm, fuzzy control theory, MIN and MAX operations, C++ programming language, compatibility function

References

  1. Zuev V.E. Prozrachnost' atmosfery dlya vidimykh i IK-luchei (Transparency of the atmosphere for visible and infrared rays), Moscow, Sovetskoe radio, 1966, 354 p.

  2. Newsletter ICAO. Monreal, Kanada, IKAO, 1972, 44 p.

  3. Newsletter ICAO. Monreal, Kanada, IKAO, 1974, 46 p.

  4. Lim Nat / 76 – WP / 1/4/6/76, Limited North Atlantic Regional Air Navigation MEETJNG. Monreal, Kanada, IKAO, 1977, 103 p.

  5. Belogorodskii S.L. Avtomatizatsiya upravleniya posadkoi samoleta (Automation of aircraft landing control), Moscow, Transport, 1972, 352 p.

  6. Aleksandrov A.G. Metody postroeniya system avtomaticheskogo upravleniya (Automatic control systems construction methods), Moscow, Fizmatlit, 2008, 230 p.

  7. Pshikhopov V.Kh., Medvedev M.Yu. Upravlenie vozdukhoplavatel'nymi kompleksami: teoriya i tekhnologii proektirovaniya (Management of aeronautical systems: theory and design technology), Moscow, Fizmatlit, 2010, 394 p.

  8. Bodner V.A. Sistemy upravleniya letatel'nymi apparatami (Aircraft control systems), Moscow, Mashinostroenie, 1973, 504 p.

  9. Zubov V.I. Lektsii po teorii upravleniya (Lectures on control theory), St. Petersburg, Lan', 2009, 494 p.

  10. Malafeev S.I. Osnovy avtomatiki i sistemy avtomaticheskogo upravleniya (Fundamentals of automatics and automatic control system), Moscow, Akademiya, 2010, 384 p.

  11. Pervozvanskii A.A. Kurs teorii avtomaticheskogo upravleniya (Course of automatic control theory), St. Petersburg, Lan', 2010, 624 p.

  12. Belogorodskii S.L. Sistemy navigatsii, posadki i UVD GA. Sbornik statei. Moscow, MGA, 1976. No.1, 64 p.

  13. Yurevich E.I. Teoriya avtomaticheskogo upravleniya (Theory of automatic control), St. Petersburg, BHV, 2016, 560 p.

  14. Repin A.I., Snedkov A.B., Kashkina T.I. Vestnik Moskovskogo gosudarstvennogo universiteta priborostroeniya i informatiki. Seriya: Priborostroenie i informatsionnye tekhnologii, 2014, no. 50, pp. 40-46.

  15. Repin A.I., Merkishin G.V., Losev V.Yu. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no 4, pp. 159-163.

  16. Repin A.I., Yashin M.M. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no 5, pp. 178-183.

  17. Mamdani E.H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 1975, vol. 7, issue 1, 13 p. DOI: 10.1016/S0020-7373(75)80002-2

  18. Davydov Yu.T., Repin A.I. Osnovy optimizatsii i kompleksirovaniya bortovykh informatsionnykh system (Basics of optimization and integration of on-board information systems), Moscow, MAI, 1996, 170 p.

  19. Piegat A. Fuzzy Modeling and Control. Springer Science & Business Media, 2001, 728 p.

  20. Fischle K., Schröder D. Stabile adaptive Fuzzy-Regelung ohne Differentiation der Regelgrösse // Automatisierungstechnik. 1997. Vol. 45. No. 8, pp. 360-367.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI