Development of wind velocity estimation method using the airspeed

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Kyaw Z. L.*, Moung H. O.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: pinkesive@gmail.com
**e-mail: mounghtangom50@gmail.com

Abstract

The method suggested in this paper provides estimates for the three projections of wind velocity in earths normal coordinate system using satellite navigation systems (SNS) data, as well as on-board barometric airspeed measurements. The wind speed and its direction are assumed constant for a flight leg of 50-60 s duration. This means, that for the given time interval projections of the wind velocity values on the axis of the normal earth coordinate system are constant. Further, the object and observation models are presented, as well as the identification algorithm accuracy characteristics, obtained from the simulation data processing. The airspeed measuring error effect on the wind velocity estimation is also under discussion. The results, showing the accuracy of wind velocity estimation depending on the constant velocity measurement errors, are presented.

The analysis shows that horizontal projections of wind velocities are estimated with high accuracy (relative errors of 13%), but a certain time interval to obtain the proper degree of identifiability is necessary. After this, the accuracy of estimating the horizontal projections of wind velocities remains at a decent level, and does not depend heavily on the increase of the speed measurement error. The wind vertical projection estimation herewith leaves something to be desired. It makes 3040% even at zero flight speed error, and increases considerably with an increase of speed measuring error. Thus, we may conclude that the suggested method can ensure the good accuracy for estimating the wind velocities along the horizontal coordinate axes, and it is not applicable for estimating the vertical component of wind velocity.

Keywords:

parametric identification, air speed, wind speed estimation in flight, constant error of air speed measuring

References

  1. Vasil’chenko K.K., Leonov V.A., Pashkovskii I.M., Poplavskii B.K. Letnye ispytaniya samoletov (Aircraft flight tests), Moscow, Mashinostroenie, 1996, 720 p.

  2. Klein V., Morelli E.A. Aircraft system identification: Theory and Practice. USA, Reston, American Institute of Aeronautics & Astronautics (AIAA), 2006, 484 p. DOI 10.2514/4.861505

  3. Korsun O.N., Poplavsky B.K. Approaches for flight tests aircraft parameter identification. 29th Congress of the International Council of the Aeronautical Sciences (ICAS), St. Petersburg, Russia, 7-12 September 2014. Paper No 2014-0210.

  4.  Jategaonkar R.V. Flight vehicle system identification: A time-domain methodology. USA, Reston, American Institute of Aeronautics & Astronautics (AIAA), 2006, 410 p. DOI: 10.2514/4.866852

  5. Korsun O.N. Metody parametricheskoi identifikatsii tekhnicheskikh sistem (Methods for technical systems parametric identification), Moscow, MGTU im. N.E. Baumana, 2011.

  6. Ovcharenko V.N. Aerodinamicheskie kharakteristiki identifikatsii samoletov poletnymi dannym (Aerodynamic characteristics of aircraft identification by flight data), Moscow, MAI, 2017, 181 p.

  7. Korsun O.N., Poplavskii B.K. Estimation of systematic errors of onboard measurement of angle of attack and sliding angle based on integration of data of satellite navigation system and identification of wind velocity. Journal of Computer and Systems Sciences International, 2011, vol. 50, no. 1, pp. 130-143. DOI: 10.1134/S1064230711010126

  8. Bulgakov V.V., Korsun O.N., Kulabukhov V.S., Stulovskii A.V., Timofeev D.S. Algorithms of increasing the calculation accuracy for an aircrafts orientation angle. Journal of computer and systems sciences international, 2016, vol. 55, no 1, pp. 150-161. DOI: 10.1134/S1064230715050032

  9. Korsun O.N., Nikolaev S.V., Pushkov S.G. An algorithm for estimating systematic measurement errors for air velocity, angle of attack, and sliding angle in flight testing. Journal of Computer and Systems Sciences International, 2016, vol. 55, no. 3, pp. 446-457. DOI:10.1134/S1064230716030114

  10. Gumarov S.G., Korsun O.N. A method of determining the dynamic error of optical trajectory measurement stations. Measurement Techniques, 2011, vol. 54, no. 3, pp. 281-286.

  11. Schütte A., Einarsson G., Raichle A., Schöning B., Mönnich W., Orlt M., Neumann J., Arnold J., Forkert T. Numerical simulation of maneuvering aircraft by aerodynamic, flight mechanics and structural mechanics coupling. Journal of Aircraft, 2009, vol. 46, no. 1, pp. 53-64. DOI: 10.2514/1.31182

  12. Htang Om M., Zin Latt K., Karapetyan T.S. Estimation of aerodynamic parameters in conditions of measurement. ITM Web of Conferences, 2017, vol. 10, p. 4. DOI: 10.1051/itmconf/20171001007

  13. Wang Y., Dong J., Liu X., Zhang L. Identification and standardization of maneuvers based upon operational flight data. Chinese Journal of Aeronautics, 2015, vol. 28, no. 1, pp. 133-140. DOI: 10.1016/j.cja.2014.12.026

  14. Moung Htang Om, Kyaw Zin Latt. Influence analysis of input signal forms on the accuracy of aerodynamic parameter identification in aircraft longitudinal motion. Cloud of Science, 2017, vol. 4, no. 4, pp. 636-649.

  15. Luchtenburg D.M., Rowley C.M., Lohry M.W., Martinelli L., Stengel R.F. Unsteady high-angle-of-attack aerodynamic models of a generic jet transport. Journal of Aircraft, 2015, vol. 52, no. 3, pp. 890-895. DOI: 10.2514/1.C032976

  16. Wang Q., He K.F., Qian W.Q., Zhang T.J., Cheng Y.Q., Wu K.Y. Unsteady aerodynamics modeling for flight dynamics application. Acta Mechanica Sinica, 2012, vol. 28, no. 1, pp. 14-23. DOI: 10.1007/s10409-012-0012-z

  17. Pushkov S.G., Gorshkova O.Yu., Korsun O.N. Mekhatronika, avtomatizatsiya, upravlenie, 2013, no. 8, pp. 66-70.

  18. Pushkov S.G., Korsun O.N., Yatsko A.A. Mekhatronika, avtomatizatsiya, upravlenie, 2015, vol. 16, no. 11, pp. 771-776. DOI: 10.17587/mau.16.771-776

  19. Pushkov S.G., Lovitskii L.L., Korsun O.N. Mekhatronika, avtomatizatsiya, upravlenie, 2013, no. 9, pp. 65-70.

  20. Korsun O.N., Lysyuk O.P. Problemy bezopasnosti poletov, 2007, no. 2, pp. 31-41.

  21. Patrikeev S.A. Vestnik Moskovskogo aviatsionnogo instituta, 2018, vol. 25, no. 1, pp. 76-83.

  22. Albokrinova A.S., Grumondz V.T. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 79-85.

  23. Aglyamutdinova D.B., Sidyakin S.V. Vestnik Moskovskogo aviatsionnogo instituta, 2018, vol. 25, no. 1, pp. 109-121.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI