Wings aerodynamic optimization technique for small-sized unmanned aerial vehicles

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Parkhaev E. S.*, Semenchikov N. V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: EgorParhaev@yandex.ru
**e-mail: semenchikovnv@rambler.ru

Abstract

The article suggests combined technique for wings aerodynamic optimization of mini unmanned aerial vehicles (MUAV), which flight modes correspond to critical Reynolds numbers within the range order of 105–106. According to this technique, non-viscous flow-around, flow without separation and aerodynamic characteristics of the finite span wing are being computed in the beginning. The wing planform shape, wing aspect ratio and other geometrics are assumed known and specified. Computation is performed by reliable panel technique. Then the wing profiles shape optimization is performed with account for laminar-turbulent transition, and separation phenomena.

The following assumptions were assumed while wings optimization algorithm developing: the flow-around parameters computation employing 3D analysis model is non-viscous and non-separable. Viscous separated flow-around computing is performed in the contest of 2D-problem of viscous-invicid interaction. Integral aerodynamic characteristics over the wing span are being computed by the technique of lifting line theory using nonlinear section lift data. The suggested technique came from the supposition that aerodynamic characteristics of an isolated wing profile can be extrapolated on the wing. It associates with the fact that the MUAVs wings have, as a rule, a large aspect ratio (AR> 3), and hypothesis of flat sections is applicable for such kind of wings.

The article presents the results of numerical optimization on maximum quality criterion for rectangular wings planform, aspect ratios AR = 5 and AR = 10, at Re = 200 000, as well as arrow-type wing employing the suggested technique.

It was demonstrated that, the moment coefficient constraint allows increase the wing lift-drag ratio, reducing the share of resistance associated with laminar-turbulent transition occurrence and local flow separation formation. At the same time, while optimization in the absence of the moment coefficient constraint each successive quality improvement occurs due to the moment coefficient and wing middle surface curvature increase. The Cya(a) distribution herewith deviates from the initial one.

Keywords:

low Reynolds numbers, MUAV wings, accounting for laminar turbulent transition, numerical optimization

References

  1. Maslov L.A. K raschetu tsirkulyatsionnogo obtekaniya telesnogo kryla malogo udlineniya idealnoi zhidkost'yu (To the calculation of the circulation flow around the body wing of a small elongation of the ideal liquid), Trudy TsAGI, 1979, no. 2005, 33 p.

  2. Parkhaev E.S., Semenchikov N.V. Trudy MAI, 2015, no. 80, available at: http://trudymai.ru/eng/published.php?ID=56884

  3. Brusov V.S., Petruchik V.P., Morozov N.I. Aerodinamika i dinamika poleta malorazmernykh bespilotnykh letatel'nykh apparatov (Small-sized unmanned aerial vehicles aerodynamics and flight dynamics), Moscow, MAI-PRINT, 2010, 136 p.

  4. Tani I. Low-speed flows involving bubble separations. Progress in Aeronautical Sciences, 1964, vol. 5, pp. 70-103. DOI: 10.1016/0376-0421(64)90004-1

  5. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, 1992, p. 439. DOI: 10.2514/6.1992-439

  6. Langtry R.B., Menter F.R. CorrelationBased Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, 2009, vol. 47, no. 12, pp. 2894-2906. DOI: 10.2514/1.42362

  7. Vozhdaev V.V. Tekhnika vozdushnogo flota, 2011, no. 3, pp. 16-22.

  8. Belotserkovskii S.M. Tonkaya nesushchaya poverkhnost' v dozvukovom potoke gaza (Thin bearing surface in a subsonic gas flow), Moscow, Nauka, 1965, 244 p.

  9. Dubasov V.T., Bondarev E.N., Ryzhov Yu.A. Aerogidromekhanika (Aero-hydromechanics), Moscow, Mashinostroenie, 1993, pp. 132-154 (608 p.).

  10. Lighthill M.J. A new method of two-dimensional aerodynamic design. H.M. Stationery Office, 1945, 25 p.

  11. Ingen J.V. The eN method for transition prediction. Historical review of work at TU Delft. 38th Fluid Dynamics Conference and Exhibit, 23-26 June 2008, Seattle, Washington, p. 49. DOI: 10.2514/6.2008-3830

  12. Drela M. and Gilest M.B. Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA Journal, 1987, vol. 25, no. 10, pp. 1347-1355. DOI: 10.2514/3.9789

  13. Drela M. Three-Dimensional Integral Boundary Layer Formulation for General Configurations. 21st AIAA Computational Fluid Dynamics Conference, 27-30 June 2013, San Diego, CA. DOI: 10.2514/6.2013-2437

  14. Hicks R.M. and Henne P.A. Wing design by numerical optimization. Journal of Aircraft, 1978, vol. 15, no. 7, pp. 407-412. DOI: 10.2514/3.58379

  15. Chernov L.G. Polet, 2002, no. 3, pp. 23-34.

  16. XFOIL Subsonic Airfoil Development System, http://web.mit.edu/drela/Public/web/xfoil/

  17. Sivells J.C., Neely R.H. Method for calculating wing characteristics by lifting line theory using nonlinear section lift data. NACA-TR-865, National Advisory Committee for Aeronautics. Langley Aeronautical Lab.; Langley Field, VA, USA, 1947, 19 p.

  18. Arzhanikov B.C., Ma'ltsev V.N. Aerodinamika (Aerodynamics), Moscow, Oborongiz, 1956, pp. 292-296 (486 p.).

  19. 19. Drela M. Pros and Cons of Airfoil Optimization. Frontiers of Computational Fluid Dynamics, 1998, pp. 363-381. DOI: 10.1142/9789812815774_0019

  20. Khurana M.S., Winarto H., Sinha A.K. Airfoil Geometry Parameterization through Shape Optimizer and Computational Fluid Dynamic. 46th AIAA Aerospace Sciences Meeting and Exhibit (7-10 January 2008, Reno, Nevada), p. 295. DOI: 10.2514/6.2008-295

  21. Drela M. Low-Reynolds-number airfoil design for the M.I.T. Daedalus prototype: A Case Study. Journal of Aircraft, 1988, vol. 25, no. 8, pp. 724-732. DOI: 10.2514/3.45650

  22. Hepperle M. Neue Profile fur Nurflugelmodelle. FMT-Kolleg 8, Verlag fur Technik und Handwerk, Baden-Baden, Germany, 1988.

  23. Epstein B., Jameson A., Peigin S., Roman D., Harrison D., Vassberg J. Comparative study of three-dimensional wing drag minimization by different optimization techniques. Journal of Aircraft, 2009, vol. 46, no. 2, pp. 526-541. DOI: 10.2514/1.38216

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI