Energy balance analysis of prospective regional turbo-electric aircraft

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Smirnov A. V.*, Egoshin S. F.**

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: smirnov@tsagi.ru
**e-mail: sergey4791@yandex.ru

Abstract

The presented work deals with studying the possibility and practicality of high-temperature superconductors (HTSC) application while regional aircraft with hybrid electric power plant (the flying weight of up to 50 tons) developing.

The analysis was performed with mathematical model based on collating the power plant required and disposable power while a cruise flight. The basic energy and mass equations, characterizing hybrid power plants of various structures, including the structure with HTSC application, were derived.

It was revealed, that the turbo-electric aircraft is inferior to the aircraft with conventional power plant in the disposable power value. With application of conventional electrical materials, such as copper, this penalty is significant at any flying weight, and such hybrid aircraft developing is inexpedient. With HTSC technologies application this penalty is significantly lower, but it persists at any flying weight.

It can be explained by the presence of additional units in the power plant, which weight is much higher than the weight of the reducing gear, which they replace. The specific mass characteristics of the units based on conventional electric materials are significantly lower, than for HTSC units, which explains the difference in their application effectiveness. The efficiency change of power transfer herewith is insignificant.

At the same time, it was demonstrated in the framework of the model that the trend of the turbo-electric aircraft upgrading was application of installations and units (both gas turbine engines and electric motors) with the most advantageous specific energy-mass characteristics. With this, as it follows from the derived equations, the power plant should include minimum possible number of electric motors based on HTSC technologies.

It was confirmed in the framework of the constructed mathematical model that if the development of superconductor technologies allows develop HTSC-motors with specific characteristics at the level of 20 kW/kg, then the turbo-electric aircraft disposable power would attain the disposable power values of aircraft with classic power plant. It will ensure unconditional possibility for energy effective regional hybrid aircraft creation.

Keywords:

regional aircraft, turbo-electric, hybrid aircraft, hybrid power plant, high-temperature superconductors

References

  1. Flightpath 2050. Europe's Vision for Aviation: Report of the High Level Group on Aviation Research. European Commission, Luxembourg, 2011, 28 p.

  2. Fefermann Y., Maury C., Level C., Zarati K., Salanne J.-P., Pornet C., Thoraval B., Isikveren A.T. Hybrid-Electric Motive Power Systems for Commuter Transport Applications. 30th ICAS (International Council of the Aeronautical Sciences). Paper ICAS-2016-0438.

  3. Davies K.M., Norman P.J., Jones C.E., Galloway S.J., Burt G.M. Fault behaviour of a superconducting turboelectric distributed propulsion aircraft network: A comprehensive sensitivity study. International Conference on Electric Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS). Aachen University, Germany, 3-5 March 2015. DOI: 10.1109/ESARS.2015.7101487

  4. Dowdle A., Iliсґ M. Interconnected State-Space Modeling for Turboelectric Aircraft. North American Power Symposium (NARS), Morgantown, WV, USA, 17-19 September 2017. DOI: 10.1109/NAPS.2017.8107349

  5. Liu Ch., Xiayi S., Teng J., Ihiabe D. Method to Explore the Design Space of a Turbo-Electric Distributed Propulsion System. Journal of Aerospace Engineering, 2016, vol. 29, no. 5. DOI: 10.1061/(ASCE)AS.1943-5525.0000617

  6. Elektronnaya entsiklopediya aviatsionnoi tekhniki, http://www.airwar.ru/

  7. Isikveren A.T. Progress in Hybrid/Electric Transport Aircraft Design. More Electric Aircraft, Feb. 2017.

  8. Gerashchenko A.N., Makhrov V.P. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 2, pp. 178-187.

  9. Chernyshev S.L., Dunaevskii A.I., Red'kin A.V., Mikhailov Yu.S. Polet, 2013, no. 8, pp. 72-79.

  10. Ezrokhi Yu.A., Kalenskii S.M., Morzeeva T.A., Ryabov P.A., Isyanov A.M. Osnovnye rezul'taty nauchno-tekhnicheskoi deyatel'nosti TsIAM-2016. Moscow, TsIAM, 2016, pp. 51-54.

  11. Lazarev V.V. Kontseptual'noe proektirovanie samoleta (Aircraft conceptual design), Moscow, MAI, 2012, 100 p.

  12. Eger S.M. Mishin V.F. Liseitsev N.K. Proektirovanie samoletov (Aircraft design), Moscow, Mashinostroenie, 1983, 616 p.

  13. Inozemtsev A.A., Nikhamkin M.A., Sandratskii V.L. Gazoturbinnye dvigateli. Osnovy konstruirovaniya aviatsionnykh dvigatelei i energeticheskikh ustanovok (Gas turbine engines. Aircraft engines and power plants design fundamentals), Moscow, Mashinostroenie, 2007, 232 p.

  14. Grishchenko A.V., Kruchek V.A., Strekopytov V.V. Elektricheskie peredachi lokomotivov (Locomotives electric transmissions), Moscow, Marshrut, 2003, 310 p.

  15. Egoshin S.F., Smirnov A.V. Tekhnika vozdushnogo flota, 2017, vol. XCI, no. 4(729), pp. 20-29.

  16. Dezhin D., Ivanov N., Kovalev K., Kobzeva I., Semenihin V. System Approach of Usability of HTS Electrical Machines in Future Electric Aircraft. IEEE Transactions on Applied Superconductivity, 2018, vol. 28, no. 4. DOI: 10.1109/TASC.2017.2787180

  17. Gabrelyan A.S., Ivanov N.S., Kondrashov D.A., Korenchuk K.Yu. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 132-140.

  18. Lakhno V.D. Superconducting Properties of 3D Low-Density Translation-Invariant Bipolaron Gas. Advances in Condensed Matter Physics, 2018. Article ID 1380986, 12 p. DOI: 10.1155/2018/1380986

  19. Strategic Research & Innovation Agenda (SRIA), vol. 1, 2. Materials of Advisory Council for Aviation Research and Innovation in Europe (ACARE), September 2012.

  20. Regional'nyi gibridnyi elektricheskii samolet ot Zunum Aero poluchil startovogo zakazchika, http://www.ato.ru/content/regionalnyy-gibridnyy -elektricheskiy-samolet-ot-zunum-aero-poluchil- startovogo-zakazchika

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI