Analysis and characteristics of prospective thermoelectric generators in aircraft electric power supply systems

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Lopatin A. A.1*, Gabdullina R. A.2**, Terentev A. A.2***, Eremeeva C. F.2****, Biktagirova A. R.1*****

1. Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia
2. Institute of Aviation, Land Transport and Energy, KNRTU-KAI, 10, K. Marx str., Kazan, 420111, Russia

*e-mail: aalopatin@kai.ru
**e-mail: rozzy94@mail.ru
***e-mail: lavochkin7@live.ru
****e-mail: cheremeeva@gmail.com
*****e-mail: ARBiktagirova@kai.ru

Abstract

The goal of the presented work consists in developing a technique for computing a part of the aircraft engine casing realized as a thermoelectric generator. The thermoelectric generator (TEG) application onboard an aircraft allows discard the mechanical electric current generator, operating on account of energy extraction from the aircraft engine rotor. At present, a great number of thermoelectric materials, prospective for practical application have been studied. One of prospective trends in this matter is application of housing elements as a basis for TEGs design. The aircraft power plant is undoubtedly the most thermally burdened component. The temperature field along the engine path herewith is characterized by a significant gradient.

Since the thermoelectric gadgets' computing is accompanied by certain difficulties associated with electric and thermal parameters dependencies, the authors developed the technique for computing a housing element, represented in the form of thermoelectric generator of a cylindrical shape. The article presents computation results, performed according to the developed technique, which allow determine and evaluate the value of power output, as well as TEG electric parameters and boundary temperatures of housing walls at the design stage.

The electrical power of the thermo-generator module depends on the flow rate, which cools one side of the housing: a small increase in its speed up to 40 m/s, the power output increases up to 1 kW. It can be seen that under similar conditions with flow rate growth from 50 m/s the power output increases only by 550 W. A similar situation is observed for the case when a TEG is made of of bismuth telluride. Characteristic presented in the article allows determine what engine operation mode would be the most optimal for the TEG effective implementation onboard an aircraft.

To study characteristics and parameters of thermoelectric generator the test bench was employed. The following parameters were measured while the experiments: the resultant current and voltage in thermoelectric modules connected in series (each module is a 64 thermocouples per module, connected in series cased in an insulating ceramic housing), hot and cold junctures temperatures, speed and temperature of the hot and cooling flows.

The paper presents numerical and graphical results of analytical and experimental studies, on which basis the inference can be drawn on the perspective of practical implementation of thermoelectric modules as aircraft engines components. The prospect of TEGs application in high-temperature aircraft and spacecraft power plants is determined by the necessity to obtain powerful enough electric power source onboard with modest weight and size characteristics and high reliability.

Keywords:

aircraft engine housing, thermoelectric generator, thermoelectric generators in aircraft engines, aircraft electric power supply, thermoelectric materials

References

  1. Khvesyuk V.I., Ostanko D.A., Skryabin A.S., Tsygankov P.A., Chelmodeev R.I., Chirkov A.Yu. Nauka i Obrazovanie. MGTU im. N.E. Baumana, 2016, no. 03, pp. 81-105. DOI: 10.7463/0316.0835477

  2. Arms S.W., Galbreath J.H., Townsend C.P., Churchill D.L., Corneau B., Ketcham R.P., Phan N. Energy harvesting wireless sensors and networked timing synchronization for aircraft structural health monitoring. 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Aalborg, Denmark 17-20 May 2009). New York, IEEE, 2009, pp. 16-20. DOI: 10.1109/WIRELESSVITAE.2009.5172414

  3. Gerashchenko A.N., Makhrov V.P. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 2, pp. 178-187.

  4. Rowe D.M. Thermoelectrics Handbook: Macro to Nano. CRC Press, Taylor & Francis Group, 2006, 954 p.

  5. Bauer R.H. Auxiliary electric power for an automobile through the utilization of a thermoelectric generator: A critical examination. PhD Thesis, Department of Mechanical Engineering, Clarkson College of Technology, Potsdam, New York, 1963.

  6. LeBlanc S., Yee S.K., Scullin M.L., Dames C., Goodson K.E. Material and manufacturing cost considerations for thermoelectric. Renewable and Sustainable Energy Reviews, 2014, vol. 32, pp. 313-327. DOI: 10.1016/j.rser.2013.12.030

  7. Shevel'kov A.V. Uspekhi khimii, 2008, vol. 77, no. 1, pp. 3-21.

  8. Khvostikov V.P., Khvostikova O.A., Gazaryan P.Yu., Shvarts M.Z., Rumyantsev V.D., Andreev V.M. Fizika i tekhnika poluprovodnikov, 2004, vol. 38, no. 8, pp. 988-993.

  9. Gol'tsman B.M., Dashevskii Z.M., Kaidanov V.I., Kolomoets N.V. Plenochnye termoelementy: fizika i primenenie (Film thermal elements: physics and application), Moscow, Nauka, 1985, 233 p.

  10. Grigor'yants A.G., Misyurov A.I., Shupenev A.E. Inzhenernyi zhurnal: nauka i innovatsii, 2012, no. 6(6), pp. 130-135. DOI: 10.18698/2308-6033-2012-6-234

  11. Gromov G. Komponenty i tekhnologii, 2014, no. 9(158), pp. 108-113.

  12. Lopatin A.A., Fatkhieva R.A., Terent'ev A.A. Vestnik KGTU im. A.N. Tupoleva, 2017, vol. 73, no. 2, pp. 42-48.

  13. Bode C., Friedrichs J., Somdalen R., Köhler J., Büchter K.-D., Falter C., Kling U., Ziolkowski P., Zabrocki K., Müller E., Kozulovic thermoelectric energy recuperation for aviation. ASME 2016 International Mechanical Engineering Congress and Exposition, Arizona, USA, November 11–17, 2016, 11 p. DOI: 10.1115/IMECE2016-66650

  14. Fatkhieva R.A., Lopatin A.A., Terent'ev A.A. Klimovskie chteniya – 2017. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya. Sbornik trudov, St. Petersburg, Skifiya-print, 2017, p. 275.

  15. Fatkhieva R.A., Lopatin A.A., Terent'ev A.A. Klimovskie chteniya – 2017. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya. Sbornik trudov, St. Petersburg, Skifiya-print, 2017, p. 270.

  16. Fatkhieva R.A., Lopatin A.A., Terent'ev A.A. XIV Korolevskie chteniya: Sbornik trudov mezhdunarodnoi molodezhnoi nauchnoi konferentsii (Samara, 03-05 October 2017). Samara, Samarskii natsional'nyi issledovatel'skii universitet im. akademika S.P. Koroleva, 2017, vol. 1, pp. 341.

  17. Shostakovskii P. Sovremennaya elektronika, 2016. Part 1, no. 1, pp. 28-34.

  18. Nashchokin V.V. Tekhnicheskaya termodinamika i teploperedacha (Technical thermodynamics and heat transfer), Moscow, Vysshaya Shkola, 1975, 497 p.

  19. Korablev V.A., Takhistov F.Yu., Sharkov A.V. Prikladnaya fizika. Termoelektricheskie moduli i ustroistva na ikh osnov (Applied physics. Thermoelectric modules and gadgets on based their basis), St. Petersburg, SPbGITMO (TU), 2003. URL: http://elib.spbstu.ru/dl/local/500.pdf

  20. Vinogradov S.V., Khalykov K.R., Nguen K.D. Vestnik AGTU. Ser.: Morskaya tekhnika i tekhnologiya, 2011, no. 1, pp. 84-91.

  21. Shostakovskii P. Komponenty i tekhnologii, 2010, no. 12(113), pp. 131-138.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI