Design refinement of combustion chamber of gas turbine engine with toroid recirculation zone

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Orlov M. Y.*, Anisimov V. M.**, Kolomzarov O. V.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: adler65@mail.ru
**e-mail: vradik@mail.ru
***e-mail: kolomzarov@gmail.com

Abstract

The design of a serial auxiliary power unit was employed as a prototype while developing a new engine. The schematic solution of inlet unit and centrifugal compressor was preserved in the new design, while the engine turbine underwent changes right from the start, since it became radial instead of axial. It required the changes of the combustion chamber design. After studying a number of possible schemes, a decision was made to choose the straight-flow combustion chamber of a ring-type of, which had substantial reserves for minimization on size with relative simplicity of its technological design. The specific feature of this particular combustion chamber is its diagonal positioning relative to the engine axis. A number of problems associated with the lack of experimental and calculation data arise while organizing a working process in the combustion chamber of this type.

The goal of the study is design refinement of the considered combustion chamber structure to optimize the workflow of the annular combustion chamber with the offset zone of a toroid type.

At the first stage, the design refinement of the flame tube structure was performed to organize a vortex structure in the primary zone by changing diameters and a number of clamping apertures and addition of a «springboard» of the internal rim of the flame tube. At the second stage the design refinement of the seat of flame in the primary combustion zone was performed. The atomizer was substituted by the spray injector, and vane swirlers were added to the duct between the deflector and the flame tube wall. The third stage was devoted to the necessary temperature field forming at the combustion chamber outlet. For this purpose the works shaping-up the necessary jets penetration depth, the number and location of shift apertures were performed.

The outcome of the activities consists in obtaining acceptable combustion chamber design of the engine being developed, in which the authors succeeded achieving the flame stabilization in the primary combustion zone, temperature field distribution inside the chamber, excluding its burn-through, and temperature filed irregularity reduction at the outlet.

Keywords:

combustion chamber, toroid recirculation zone, design refinement, primary combustion zone, computer simulation

References

  1. Baklanov A.V. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 57-68.

  2. Krylov B.A., Onishchik I.I., Yun A.A. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 1, pp. 27-30.

  3. Siluyanova M.V., Chelebyan O.G. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 1, pp. 75-82.

  4. Lanskii A.M., Lukachev S.V., Kolomzarov O.V. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 3, pp. 47-57.

  5. Kolodyazhnyi D.Yu., Nagornyi V.S. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 1, pp. 56-67.

  6. Shirokov I.N., Abashev V.M. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 5, pp. 61-64.

  7. Bachev N.L., Matyunin O.O., Kozlov A.A., Bacheva N.Yu. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 2, pp. 108-116.

  8. Krylov B.A., Manuilov A.A., Fedorov S.A., Yun A.A. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no. 5, pp. 111-115.

  9. Agulnik A.B., Onishchik I.I., Khtai T.M. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 6, pp. 74-81.

  10. Dyachenko D.A. Vestnik Moskovskogo aviatsionnogo instituta, 2008, vol. 15, no. 3, pp. 51-54.

  11. Abrashkin V.Yu. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2006, vol. 8, no. 4, pp. 1136-1141.

  12. Lukachev V.P., Lanskii A.M., Abrashkin V.Yu., Didenko A.A., Zubkov P.G., Kovylov Yu.L., Matveev S.G., Tsyganov A.M., Shamban M.A., Yakovlev V.A. Protsessy goreniya, teploobmena i ekologiya teplovykh dvigatelei. Sbornik statei. Samara, Samarskii natsionalnyi issledovatelskii universitet imeni akademika S.P. Koroleva, 1998, pp. 11-39.

  13. Carr E. Futher applications of the lucas fan spray fuel injection combustion system. ASME International Gas Turbine Symposium and Exposition. Beijing, People's Republic of China, September 17, 1985. Paper No. 85-IGT-116, 8 p. DOI: 10.1115/85-IGT-116

  14. Carr E., Todd H. The design and performance of a reverse flow combustion system for the TP 500 gas turbine engine. American Society of Mechanical Engineers (ASME), 1989, 6 p.

  15. Carr E. The combustion of a range of distillate fuels in small gas turbine engines. ASME International Gas Turbine Conference and Exhibit and Solar Energy Conference, San Diego, California, USA, March 1215, 1979. Paper No. 79-GT-175, 9 p. DOI: 10.1115/79-GT-175

  16. Orlov M.Yu., Anisimov V.M. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 50-56.

  17. Anisimov V.M., Orlov M.Yu., Zubrilin I.A. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 3, pp. 29-39.

  18. Krylov B.A., Manuilov A.A., Federov S.A., Yun A.A. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no. 5, pp. 111-115.

  19. Biryukov V.I., Belaya A.Yu. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 3, pp. 110-115.

  20. Agulnik A.B., Onishchik I.I., Khtai T.M. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 2, pp. 65-71.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI