Computer aided design and computing of a plate-type heat exchanger for small-size gas turbine engine

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Remchukov S. S.*, Danilov M. A.**, Chistov K. A.***

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: remchukov.sviatoslav@yandex.ru
**e-mail: danilovma@mail.ru
***e-mail: evander2010@yandex.ru

Abstract

The article presents computational complex allowing perform computer aided design and calculation of a compact heat exchanger for a small-size gas turbine engine.

The coomputational complex includes a number of blocks based on open commercial programs. The blocks are united by the common software algorithm, developed at Central Institute of Aviation Motors (CIAM).

The input data is changed at each iteration to obtain the required parameters, namely, the regeneration degree and hydraulic resistance.

Computer aided design and calculation include the steps of the initial data entering into the parametric model, checking compliance with the restrictions, automatic model building, meshed models preparation, working medium flowing calculation and computational results output. The initial data is set with account for limitations, such as overall size restrictions and material outlet depth. The possibility of obtaining better thermohydraulic characteristics depending on the model geometry should be accounted for as well.

Automatic building of models is performed according to the set parameters.

At the next stage, the built models are loaded to the ICEM CFD program, and meshes building is performed.

The obtained grid models are used for calculation in Ansys CFX software. Full pressures and temperatures of air and gas at the inlet, as well as the flow rate of gas and air at the outlet are set as boundary conditions. The employed turbulence model is Shear Stress Transport model.

After calculation termination, the resulting file, containing all significant exchanger computational parameters, is formed in the form of a table.

In case of the obtained parameters discrepancy with the claimed requirements, the parameters correction is performed with subsequent repetition of the considered algorithm.

Automation of the design and computing algorithm allows employing it together with CAD complexes for multi-criteria optimization.

The developed computing complex allows obtaining the optimal heat exchanger configuration for a specific task within the specified limits. The calculating complex was being employed in CIAM for the heat exchanger envelope updating, which led to the regeneration degree increase from 62% to 76%, when total hydraulic losses decreased to 1,27% with requirements and restrictions compliance. The genetic algorithm was used as an optimization method.

Keywords:

small-sized gas-turbine engine, plate-type heat exchanger, parametric engineering

References

  1. Lanskii A.M., Lukachev S.V., Kolomzarov O.V. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 3, pp. 47-57.

  2. Shmagin K.I., Popova T.V., Lomazov V.S., Osipov I.V., Timofeev V.V., Danilov M.A., Knyazev A.N. Patent RU 2563079 C1, 20.09.2015.

  3. Dreitser G.A. Kompaktnye teploobmennye apparaty (Compact heat exchangers), Moscow, MAI, 1986, 73 p.

  4. Kozhukhotrubnyi (kozhukhotrubchatyi) teploobmennik. Ustroistvo i printsip raboty, http://www.teploobmenka.ru/oborud/art-shelltube/

  5. Plastinchatyi teploobmennik. Ustroistvo i printsip raboty, http://www.teploobmenka.ru/oborud/art-phe/

  6. Baranovskii N.V., Kovalenko L.M., Yastrebenetskii A.R. Plastinchatye i spiral'nye teploobmenniki (Plate and spiral heat exchangers), Moscow, Mashinostroenie, 1973, 288 p.

  7. Antuf'ev V.M. Effektivnost' razlichnykh form konvektivnykh poverkhnostei nagreva (Efficiency of various shapes of convective heating surfaces), Moscow, Leningrad, Energiya, 1966, 184 p.

  8. Egorov K.S., Shchegolev N.L. Nauka i obrazovanie, 2012, no. 6, pp. 351-362. DOI: 10.7463/0612.0431788

  9. Hausen H. Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Springer-Verlag-Berlin Heidelberg-New York, 1976, 432 р.

  10. Savostin A.F., Tikhonov A.M. Teploenergetika, 1970, no. 9, pp. 75-78.

  11. Siluyanova M.V., Popova T.V. Trudy MAI, 2015, no. 80, available at: http://trudymai.ru/eng/published.php?ID=56934

  12. Kraev V.M. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 4, pp. 61-67.

  13. Romanovskii V.P. Spravochnik po kholodnoi shtampovke (Cold forging handbook), Leningrad, Mashinostroenie, 1979, 520 p.

  14. Tikhonov A.M. Regeneratsiya tepla v aviatsionnykh GTD (Heat regeneration in gas turbine engines), Moscow, Mashinostroenie, 1977, 108 p.

  15. Remchukov S.S., Yaroslavtsev N.L. Epokha nauki, 2016, no. 8, pp. 186-201.

  16. Yaroslavtsev N.L., Remchukov S.S. Gagarinskie chteniya 2017. Sbornik tezisov dokladov. Moscow, MFI, – 2017, p. 548.

  17. Focke W., Zachariades J., Olivier J. The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers. International Journal of Heat and Mass Transfer, 1985, vol. 28(8), pp. 14691479. DOI: 10.1016/0017-9310(85)90249-2

  18. Danilov M.A., Popova T.V. Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii (15-16 August 2014) “Nauchnye perspektivy XXI veka. Dostizheniya i perspektivy novogo stoletiya”, Novosibirsk, International Scientific Institute “Educatio”, 2014, pp. 111-113.

  19. ANSYS CFX Release 11.0, 2006, http://product.caenet.cn/uploadfiles/12872437250986625020081129090050986.pdf

  20. Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techenii (Turbulence modeling in of complex flows calculation), St. Petersburg, Politekhnicheskii institut, 2012, 88 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI