Cooling system of gas turbine engine turbine blades made of heat-resisting alloys and conductive ceramics

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Kolychev A. V.*, Kernozhitsky V. A.**, Levikhin A. A.***

Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia

*e-mail: migom@mail.ru
**e-mail: vakern@mail.ru
***e-mail: levihin1981@gmail.com

Abstract

The article deals with thermionic cooling system (TCS) of turbine blades (TB) and other hot elements (HE) of aircraft gas turbine engines (GTD), which consists in coating them with a layer (thermionic- protecting layer (TPL)) from heat-proof and heat-resisting material, but with a low electronic work function (EWF). When the TBs and HEs heating, electrons start leaving their surface, taking with them 2-10 MW/m2 of thermal energy in exponential-like temperature dependence. It will allow increase significantly the GTE efficiency due to the temperature increase of the working gas prior to the turbine and extra thermionic transformation, as well as increase the GTE reliability and lifespan.

The thermionic cooling technique under development can be employed in aircraft building while creating power gas turbine installations-converters for the spacecraft of increased power capacity and prolonged active lifespan. It can be implemented also while developing commercial systems of putting a payload and tourists into orbit, including a spacecraft based on the reusable first stage of an aircraft type with GTE, or transport aircraft with thermionic GTE. Besides, the technology under development will be called-up for the fuel-and-power sector and shipbuilding while power plants developing, and in oil and gas sector for gas pumping units developing etc.

The TCS realization will allow increase the temperature of the working gas prior to the turbine without increasing the quantity of the air tapped off the compressor, or increase the resource of the most thermally stressed elements of the gas turbine parts, the efficiency increase, thermal stresses reduction in blades due to the thermionic sensitivity to the temperature. It will ensure continuous diagnostics of the turbine state and other high-temperature elements in real-time mode based on electrical engineering parameters, depending on the number of thermo-emission electrons perceived by the anode, and modernize gas turbine installations and GTEs produced in Russia with their resource enhancing due to the extra cooling and without their serious reconstruction.

Keywords:

thermionic emission, electronic cooling, thermionic cooling, turbine blades, efficiency improvement, gas turbine units, gas pumping units, technological leadership, hard-to-reach resource fields development

References

  1. Inozemtsev A.A., Nikhamkin M.A., Sandratskii V.L. Osnovy konstruirovaniya aviatsionnykh dvigatelei i energeticheskikh ustanovok (Aircraft engines and power plants design fundamentals), Moscow, Mashinostroenie, 2007. Vol. 2 – 208 p.

  2. Tryanov A.E. Osobennosti konstruktsii uzlov i system aviatsionnykh dvigatelei i energeticheskikh ustanovok (Aircraft engine and power plant components and systems design specifics), Samara, SGAU, 2011, 202 p.

  3. Falaleev S.V. Sovremennye problemy sozdaniya dvigatelei letatel'nykh apparatov (Modern problems of aircraft engines development), Samara, SGAU, 2012, 106 p.

  4. Nesterenko V.G., Matushkin A.A. Trudy MAI, 2010, no. 39, available at: http://trudymai.ru/eng/published.php?ID=14813

  5. Vasil'ev B.E., Magerramova L.A. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 4, pp. 100-108.

  6. Magerramova L.A., Vasil'ev B.E. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 5, pp. 89-97.

  7. Shcherbakov M.A., Vorob'ev D.A. Vestnik Moskovskogo aviatsionnogo instituta, 2013, vol. 20, no. 3, pp. 95-103.

  8. Vikulin A.V., Yaroslavtsev N.L., Zemlyanaya V.A. Trudy MAI, 2016, no. 88, available at: http://trudymai.ru/eng/published.php?ID=70594

  9. Chesnova V.A. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 4, pp. 93-108.

  10. Mel'nikova G.V., Shorr B.F., Sal'nikov A.V., Nigmatullin R.Z. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 1, pp. 76-85.

  11. Danil'chenko V.P., Lukachev S.V., Kovylov Yu.L., Postnikov A.M., Fedorchenko D.G., Tsybizov Yu.I. Proektirovanie aviatsionnykh gazoturbinnykh dvigatelei (Aircraft gas turbine engines design), Samara, Samarskii nauchnyi tsentr RAN, 2008, 620 p.

  12. Babkin V.I. Dvigatel', 2016, no. 3(105), pp. 6-12.

  13. Potapov S.D., Perepelitsa D.D. Vestnik Moskovskogo aviatsionnogo instituta, 2013, vol. 20, no. 1, pp. 124-139.

  14. Vikulin A.V., Yaroslavtsev N.L., Chesnova V.A. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2016, no. 1, pp. 54-58.

  15. Lanevskii T.M., Leont'ev M.K. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 2, pp. 121-133.

  16. Chupin P.V., Shmotin Yu.N. Teplovye protsessy v tekhnike, 2010, no. 4, pp. 146-154.

  17. Potapov S.D., Perepelitsa D.D. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 1, pp. 104-110.

  18. Naprienko S.A., Orlov M.R. Trudy VIAM, 2016, no. 2 (38), available at: http://viam-works.ru/ru/articles?art_id=919 DOI: 10.18577/2307-6046-2016-0-2-3-3

  19. Kolychev A.V., Kernozhtskii V.A. Patent RU 2573551 C2, 20.01.2016.

  20. Kolychev A.V., Kernozhitskii V.A. Patent RU 2578387 C2, 27.03.2016.

  21. Kolychev A.V., Kernozhitskii V.A., Okhochinskii M.N. Patent RU 151082, 20.03.2015.

  22. Kernozhitskii V.A., Kolychev A.V. Energetika Tatarstana, 2015, no. 3, pp. 16-19.

  23. Kolychev A.V., Kernozhitskii V.A. XL Akademicheskie chteniya po kosmonavtike: tezisy dokladov, Moscow, Bauman MGTU, 2015, pp. 63-64.

  24. Ushakov B.A., Nikitin V.D., Emel'yanov I.Ya. Osnovy termoemissionnogo preobrazovaniya energii (Thermionic energy conversion fundamentals), Moscow, Atomizdat, 1974, 288 p.

  25. Kvasnikov L.A., Kaibyshev V.Z., Kalandarishvili A.G. Rabochie protsessy v termoemissionnykh preobrazovatelyakh yadernykh energeticheskikh ustanovok (Working processes in nuclear power plants thermionic converters), Moscow, MAI, 2001, 204 p.

  26. Fomenko V.S. Emissionnye svoistva materialov (Emission properties of materials), Kiev, Naukova dumka, 1981, 339 p.

  27. Babichev A.P., Babushkina P.L., Bratkovskii A.M. Fizicheskie velichiny (Physical values), Moscow, Energoatomizdat, 1991, 1232 p.

  28. Kolychev A.V., Kernozhitskii V.A. Reshetnevskie chteniya, 2009, vol. 1, no. 13, pp. 29-30.

  29. Alkandry H., Hanquist K.M., Boyd I.D. Conceptual Analysis of Electron Transpiration Cooling for the Leading Edges of Hypersonic Vehicles. 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA AVIATION Forum, (Atlanta, GA). DOI: 10.2514/6.2014-2674

  30. Uribarri L.A., Allen E.H. Electron Transpiration Cooling for Hot Aerospace Surfaces. 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, (Glasgow, Scotland), 2015. DOI: 10.2514/6.2015-3674

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI