Jet-type vortex generators impact on take-offand landing characteristics of a wing with slats

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Brutyan M. A.*, Potapchik A. V.**, Razdobarin A. M.***, Slitinskaya A. Y.****

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: m_brut@mail.ru
**e-mail: a.v.potapchik@yandex.ru
***e-mail: razdobarinam@mail.ru
****e-mail: flinas@yandex.ru

Abstract

To increase maximum lifting force coefficient of the aircraft wing with fixed geometry, it is reasonable to use the flow control concept. For this purpose, the new way of flow control about a wing with deflected slat, suggested by authors, is being studied experimentally and numerically. A number of slanting holes (along the flow and longwise a wingspan), through which the air jets are blown-out, is made to create vortex cores at the nose section of the upper surface of the wing’s main part, which opens while the slat root section moving-out. The pilot experimental studies of the new method of the wing with slat flow- around at the take-off and landing modes were performed on a model of a modern long-range aircraft with mechanized wing with moving-out slats and flaps.

The slats are made along the wingspan with a gap along the motor-nacelle pylon. The aircraft model testing while the landing state of the high-lift device with jet-type vortex generators and without them were performed with ADT T-106 TsAGI, equipped with aerodynamic scales. Slats and flaps were in landing state; with corresponding deviation angles of δsl = 24° and δfl = 36°. Weight measurements of aerodynamic characteristics were performed at the Mach number of the incident flow М = 0.15. It corresponds to the Reynolds number value of Re = 3.1⋅106 at the pressure pumping up to 5 atm in the working section of the tube. The angle of attack was being changed from 4 to 26°.

Numerical simulations of jet-type vortex generators impact on the wing flow-around pattern in a take-off and landing configuration were performed. Numerical calculations were performed to compare the experiment and the expanded range of the studied parameters. The well-known ANSYS CFX software based on the numerical solution of averaged Navier-Stokes equations for the compressible perfect gas with two-parameter SST turbulence model was used. The flow was considered turbulent starting from leading edge. The surface of the model was assumed adiabatic; the viscosity-temperature relation was determined by Sutherland’s law with the constant C = 110.4 K. The number of computational nodes used for the flow-around modelling with streams increased approximately up to 68 million.

The performed studies of passive technique for streams forming by the air blow-by from low the wing underside to its upside at the numbers of Re = 3.1⋅106 and М =0.15 revealed the possibility of the maximum lifting force coefficient increase.

Keywords:

flow-around control, jet-type vortex generators, numerical and experimental studies of aerodynamic characteristics

References

  1. Ardzhomandi M. Aerospace MAI Journal, 1999, vol. 6, no. 1, pp. 16-23.

  2. Obert E. Aerodynamic Design of Transport Aircraft, Delft University of Technology, IOS Press, 2009, 656 p.

  3. Byushgens G.S. Aerodinamika i dinamika poleta magistral’nykh samoletov (Aerodynamics and flight dynamics of the long-range aircraft), Moscow – Pekin, Izdatel’skii otdel TsAGI – Avia-Izdatel’stvo KNR, 1995, 772 p.

  4. Tyutyunnikov N. P., Shklyarchuk F. N. On effectiveness of turn winglets using in the capacity of wing mechanization elements. Aerospace MAI Journal, 2015, vol. 22, no. 4, pp. 21-31.

  5. Barinov V.A., Gubanova M.A., Mikhailov Yu.S., Sudakov V.G., Yanin V.V. Materialy XVIII shkoly- seminara “Aerodinamika letatel’nykh apparatov”. Sbornik trudov (Zhukovskii, Moskovskaya oblast’, 01-02 March 2007), Moscow, TsAGI, 2007, p. 20.

  6. Bragin N.N., Gubanova M.A., Khozyainova G.V. Materialy XXI Nauchno-tekhnicheskoi konferentsii po aerodinamike (p. Volodarskogo, 25–26 February 2010). Sbornik trudov, Moscow, TsAGI, 2010, pp. 35-36.

  7. Gubskii V.V. Trudy MAI, 2013, no. 68. URL: http://trudymai.ru/eng/pubHshed.php?ID=41737

  8. Brunet V., Dandois J., Verbeke C. Recent Onera Flow Control Research on High-Lift Configurations. Journal Aerospace Lab, 2013, issue 6, http://www.aerospacelab-journal.org/al6/recent-onera-flow-control-research- on-high-lift-configurations

  9. Imamura T., Enomoto S., Yokokawa Y., Yamamoto K. Three-Dimensional Unsteady Flow Computations Around a Conventional Slat of High-Lift Devices. AIAA Journal, 2008, vol. 46, no. 5, pp. 1045–1053.

  10. Skomorokhov S.I., Teperin L.L. Uchenye zapiski TsAGI, 1990, vol. XXI, no. 1, pp. 82–88.

  11. Brutyan M.A. Zadachi upravleniya techeniem zhidkosti i gaza (Problems of fluid and gas flow control), Moscow, Nauka, 2015, 271 p.

  12. Brutyan M.A., Petrov A.V., Potapchik A.V. New method of transonic buffet decreasing on supercritical airfoil. 30th Congress of the International Council of the Aeronautical Sciences ICAS-2016 (Daejeon, Korea, 25–30 September 2016), https://www.icas.org/ICAS_ ARCHIVE/ICAS2016/data/preview/2016_0127.htm

  13. Brutyan M.A. Osnovy transzvukovoi aerodinamiki (Transonic aerodynamics fundamentals), Moscow, Nauka, 2017, 176 p.

  14. Yokokawa Y., Murayama M., Ito T., Yamamoto K. Experimental and CFD of a High-Lift Configuration Civil Transport Aircraft Model. 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (San Francisco, California, 5-8 June 2006). AIAA 2006­3452. DOI: 10.2514/6.2006-3452

  15. Imamura T., Ura H., Yokokawa Y., Tanaka K., Hirai T., Yamamoto K. Overview of the numerical simulations of a high-lift-device noise measurement model. 26th International Congress of the Aeronautical Sciences (ICAS). 2008, 10 p.

  16. Pavlenko O.V., Pigusov E.A. Modeli i metody aerodinamiki (04-11 June 2018). Sbornik trudov, Moscow, TsAGI, 2018, pp. 113-114.

  17. Terracol M., Manoha E., Lemoine B. Investigation of the unsteady flow and noise sources generation in a slat cove: hybrid zonal RANS/LES simulation and dedicated experiment. 20th AIAA Computational Fluid Dynamics Conference (27-30 June 2011, Honolulu, Hawaii, USA). AIAA 2011-3203, 25 p. DOI: 10.2514/ 6.2011-3203

  18. Kurilov V.B., Sakharova A.I., Skomorokhov S.I., Chernavskikh Yu.N., Matrosov A.A., Podobedov V.A. XXIX Nauchno-tekhnicheskaya konferentsiya po aerodinamike (d. Bogdanikha, 01-02 March 2018), Moscow, TsAGI, 2018, p. 147.

  19. Voevodin A.V., Sudakov V.G., Gubanova M.A. XXIV Nauchno-tekhnicheskaya konferentsiya po aerodinamike (p. Volodarskogo, 28 February–01 March 2013), Moscow, TsAGI, 2013, pp. 96-97.

  20. Vyshinskii V.V., Sudakov G.G. Trudy TsAGI, issue 2673, Moscow, TsAGI, 2007, 22 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI