Algorithm of transient flight modes performance by convertiplane

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Artamonov B. L.*, Shydakov V. I.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: k102@mai.ru; abl-6124554@yandex.ru
**e-mail: k102@mai.ru

Abstract

The article considers the Project Zero convertiplane implemented according to the structure with two rotary screws positioned in the fixed wing. The screws are driven by electric motors powered by batteries, and controlled by a common and cyclic step. Electric transmission of the Project Zero convertiplane allows smooth change of the propeller rotations while transient flight mode performing with minimum required power.

The article analyzes control laws of screws, which allow performing transient flight modes from helicopter to aircraft without losing altitude at minimal engine power consumption. The described algorithm uses the results of experimental studies of the convertiplane body model in the t-1 MAI wind tunnel by th angle of attack at various rotation angles of the screws axes of rotation relative to the fuselage longitudinal datum line. This allowed reduce the problem to a system of transcendental equations of the convertiplane motion, which was solved numerically by successive approximations method. The aerodynamic characteristics of the propellers located in the ring fairings are being computed based on the disk vortex theory.

It is shown that while the convertiplane transition from hover mode to flight mode the screw control laws are of a rather complex character, and may be realized only by employing automation. The obtained convertiplane control laws at the transient flight mode are effective from the energetic viewpoint. The power consumption in the transient process endpoint is three times less than in the hover mode, which allows further convertiplane flight speed increase.

Keywords:

convertiplane, control strategies, aerodynamic characteristics, transient flight modes, control laws

References

  1. Tishchenko M.N., Artamonov B.L. Trudy MAI, 2012, no. 55. URL: http://tmdymai.ru/eng/published.php7ro=30115

  2. Grebennikov A.G., Gumennyi A.M., Urbanovich V.A., Buival L.Yu. Otkrytye informatsionnye i komp’yuternye integrirovannye resursy, 2016, no. 73, pp. 22-30. URL: https://docplayer.ru/47633105-Analiz-shem-konvertoplanov.html

  3. Aviatsiya, tekhnika i istoriya. Konvertoplany, 04.08.2016. URL: http://t-yoke.ru/2016/04/08/

  4. Miodushevskii P.V., Legovich Y.S. Development of prospective multipurpose convertiplane. Aerospace MAI Journal, 2018, vol. 25, no 3, pp. 55-63.

  5. Panasyuchenko P.S. Selection of critical parameters of a single rotor scheme rotary-ring with swiveling steering gear. Aerospace MAIJournal, 2015, vol. 22, no 4, pp. 38-45.

  6. Pervyi polet novogo amerikanskogo konvertoplana Bell V-280 Valor, https://pikabu.ru/story/pervyiy_polet_novogo_amerikanskogo_konvertoplana_bell_v280_valor_5569010

  7. Safronov V. Konvertoplany – aviatsiya, tekhnika, istoriya, 04.08.2016, http://t-yoke.ru/2016/04/08/%D0%BA%D0%BE%D0%BD%D0%B2%D0%B5% D1%80%D1%82%D0%BE%D0%BF%D0%BB% D0%B0%D0%BD%D1%8B/

  8. Semenov V.N. Materialy nauchno-prakticheskoi konferentsii studentov i molodykh uchenykh MAI “Innovatsii v aviatsii i kosmonavtike – 2010” (26–30 April 2010). Sbornik tezisov dokladov. St. Petersburg, Masterskaya pechati, 2010, 206 p.

  9. Artamonov B.L. Aviakosmi-cheskoe priborostroenie, 2008, no. 2, pp. 11-17.

  10. Turmanidze R.S., Dadone L., Sanadze G.O. Materialy 5-go foruma Rossiiskogo vertoletnogo obshchestva. Moscow, MAI, 2002, vol. VI, pp. 39-48.

  11. Kalinin D. V., Kalinin Y. V. Two-stage transmission scheme design for perspective helicopter. Aerospace MAI Journal, 2016, vol. 23, no 1, pp. 38-46.

  12. Kinematika gibridnykh transmissii, 2018, https://engineering-ru.livejournal.com/98020.html

  13. Hirschberg M. Project zero: The exclusive story of AgustaWestland’s all electric technology incubator. Vertiflite, 2013, vol. 59, no. 3, pp. 11-12.

  14. Perry D. Paris: Project Zero tiltrotor makes Paris debut, 2013, https://www.flightglobal.com/news/articles/paris-project-zero-tiltrotor-makes-paris-debut-387291/

  15. Shaffer L. Project Zero electric helicopter by AgustaWestland on show at Singapore Airshow. Aerospace & Defense, 2016, https://www.cnbc.com/2016/02/15/project-zero-electric-helicopter-by-augustawestland-on-show-at-sinagpore-airshow.html

  16. Byushgens A.G., Voronin A.Yu., Kuvshinov V.M., Leont’ev V.A. Uchenye zapiski TsAGI, 2018, vol. 49, no. 2, pp. 39-61.

  17. Yatsun S.F., Emel’yanova O.V., Savin A.I., Stukaneva S.P. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Tekhnika i tekhnologii, 2015, no. 1(14), pp. 55–66.

  18. Ignatkin Yu.M., Makeev P.V., Shomov A.I. Materialy 15 Mezhdunarodnoi konferentsii “Aviatsiya i kosmonavtika – 2016” (MAI, 14 – 18 November 2016). Sbornik statei, Moscow, Lyuksor, 2016, pp. 53-55.

  19. Shaidakov V.I. Aerodinamika vinta v kol’tse (Aerodynamics of the screw in the ring), Moscow, MAI, 1996, 87 p.

  20. Myasnikov M.I., Esaulov S.Yu., Ivchin V.A. Polet 2018, no. 2, pp. 29-36.

  21. Shaidakov V.I., Maslov A.D. Aerodinamicheskoe proektirovanie lopastei vozdushnogo vinta (Propeller blades aerodynamic designing), Moscow, MAI, 1995, 68 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI