Numerical studies of nozzle thrust characteristics of supersonic civil aircraft by computational gas dynamics method

Aeronautical and Space-Rocket Engineering

Aerodynamics and heat-exchange processes in flying vehicles


DOI: 10.34759/vst-2019-4-7-16

Аuthors

Gorbovskoi V. S.*, Kazhan A. V., Kazhan V. G., Shenkin A. V.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: vgorbovskoy@mail.ru

Abstract

One of the most urgent problem while developing a new generation supersonic civil aircraft is ecologic requirements ensuring, including the community noise level near the airport. It requires developing and studying new technical solutions ensuring both low nozzle thrust losses level at all flight modes and reduction of jet flow velocity to decrease its noise level at the take-off/landing modes. One of the possible trends for this problem solving is mixer-ejector type nozzle application on the supersonic civil aircraft. Its operation principle consists in the fact that at the take­off mode with sound absorption, the hot jet is split into smaller jets by the multi-lobe nozzle. The increased surface area of the ruffled jet intensifies its mixing with atmospheric air, and reduces the length of the mixing layer initial section. The mixed jet velocity in the nozzle outlet section reduces, and thus the effect of acoustic suppression is achieved. Mixing zone shielding by the tail part elements of the airframe allows additional enhancing of acoustic suppression. At the flight modes without acoustic suppression the mixer- ejector type nozzle transforms into conventional supersonic nozzle with much higher thrust characteristics.

To reduce time and financial costs at the preliminary design stages, it is expedient to employ computational methods, ensuring high level of confidence. Modern software for fluid numerical modelling are applicable for solving a wide class of problems. However, refinement of flow numerical modelling technique is necessary for solving concrete problem. In the presented work, rational parameters for computing and computational grids were selected.

Modern Computational Fluid Dynamics (CFD) software allows solving a wide class of problems. However, refinement of flow numerical modelling technique is necessary for solving concrete problem. In the presented work, rational parameters for computing and computational grids were selected to study physics of the flow and obtain integral characteristics of the nozzle, such as mixer-ejector nozzle, at the take-off, landing, transonic and supersonic flight regimes. This method is employed to predict the nozzle thrust losses with ANSYS CFX commercial CFD code of Reynolds- averaged Navier-Stokes equation numerical solution. The numerical study of losses in mixer-ejector nozzle with active system of acoustic suppression at the take­off and landing modes are performed, and obtained results are validated by the experimental data. The accuracy of validation does not exceed 0.5% of the ideal thrust losses at all flight modes.

Keywords:

nozzle of civil supersonic aircraft, jet engine noise reduction, nozzle thrust losses, computational fluid dynamics, numerical study of nozzle thrust characteristics

References

  1. Munin A.G. Kuznetsov V.M. Leont’ev E.A. Aerodinamicheskie istochniki shuma (Aerodynamic noise sources), Moscow, Mashinostroenie, 1981, 248 p.

  2. Lavrukhin G.N. Aerogazodinamika reaktivnykh sopel. T. 1. Vnutrennie kharakteristiki sopel (Aero-gas-dynamics of jet nozzles. Vol. 1. Internal characteristics of the nozzles), Moscow, Fizmatlit, 2003, 376 p.

  3. Sorkin L.I. Problemy umen’sheniya shuma reaktivnykh dvigatelei (Problems of jet engines noise reduction: Collection of translations), Moscow, Izdatel’stvo inostrannoi literatury, 1961, 142 p.

  4. Polyakov V.V. Itogi nauki i tekhniki. Seriya Aviastroenie (Results of science and technology. Series Aircraft), Moscow, VINITI, 1978, vol. 5, 210 p.

  5. Richards E.J. Some thoughts on noise suppression nozzle design. Combustion and propulsion. Third AGARD Colloquium, London Pergamon press. 1958. Part III, pp. 197-223.

  6. Greatrex F.B. Brown D.M. Progress in jet engine noise reduction. Advances in aeronautical sciences. Proceedings of the first congress in the aeronautical sciences (Madrid, 8-13 September 1958), pp. 364-392. DOI: 10.1016/ B978-1-4831-9832-3.50021-8

  7. Petil J.E., Scholey B.B. STOL Transport thrust reverser/ vectoring program. AFAPL-TR-72109. 1973. Vol. I & II.

  8. Knowles K. Combined Noise and Flow Control of Supersonic Jets Using Swirl. DGLR/ AIAA14th Aeroacoustics Conference (Aachen, Germany, May 11-14, 1992). Vol. 2, pp. 746-751.

  9. Louis J.W. HASA’s High-Speed Research Program. 7th European Aerospace Conference (EAC 94) on the Supersonic Transport of Second Generation (25-27 October 1994). URL: https://www.nasa.gov/centers/langley/news/factsheets/HSR-Overview2.html

  10. Whurr J. Propulsion system concepts and technology requirements for quiet supersonic transports. International Journal of Aeroacoustics, 2004, vol. 3, no. 3, pp. 259-270.

  11. Zhitenev V.K., Kolesnikova S.A., Krasheninnikov S.Yu., Mironov A.K., Shenkin A.V. Patent RU 2313680 C2, 27.12.2007.

  12. Krasheninnikov S.Yu., Mironov A.K., Paulyukov E.V., Shenkin A.V., Zhitenev V.K. Mixer-Ejector Nozzles: Acoustic and Thrust Characteristics. International Journal of Aeroacoustics, 2005, vol. 4, no. 3&4, pp. 267-288. DOI: 10.1260/1475472054771448

  13. Vlasov E.V., Zhitenev V. K, Karavosov R. K., Shenkin A.V. Materialy II Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Aviatsionnye dvigateli 21 veka” (Moscow, 6-9 December 2005), Moscow, TsIAM im. P.I. Baranova, 2005, pp. 27.

  14. Krasheninnikov S.Yu., Mironov A.K. Izvestiya Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza, 2003, no. 5, pp. 43-59.

  15. Ivanov I.E., Kryukov I. A. Numerical investigations of turbulent flows with free and restricted shock separation. Aerospace MAI Journal, 2009, vol. 16, no. 7, pp. 23-30.

  16. Hilkevich V.Ya. An influence of temperature non­uniformity for input stream on a nozzle performances. Aerospace MAI Journal, 2009, vol. 16, no. 4, pp. 27-31.

  17. Shcherbakov M.A., Yun A.A., Marchukov E.Yu., Krylov B.A. The use of modern CFD software packages for nozzle jet engine computation. Aerospace MAI Journal, 2010, vol. 17, no. 5, pp. 116-120.

  18. Gorbovskoi V.S., Kazhan V.G., Kazhan A.V., Mironov A. K. Materialy XXX Nauchno-Tekhnicheskoi konferentsii po aerodinamike (25-26 April 2019, pos. Volodarskogo). Moscow, TsAGI im. prof. N.E. Zhukovskogo, 2019, p. 93.

  19. Gorbovskoi V.S. Kazhan V.G. Shenkin A.V Materialy XXIX Nauchno-Tekhnicheskoi konferentsii po aerodinamike (1-2 Marth 2018). Moscow, TsAGI im. prof. N.E. Zhukovskogo, 2019, p. 105.

  20. Gorbovskoi V.S., Kazhan V.G., Shenkin A.V. Materialy XVI Mezhdunarodnoi shkoly-seminara “Modeli i metody aerodinamiki” (Evpatoriya, 5-12 June 2016), Moscow, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, 2016, pp. 34-35.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI