Specific defects forming features while aircraft bulky titanium structures assembling

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


DOI: 10.34759/vst-2019-4-17-27

Аuthors

Murav’ev V. I.*, Bakhmatov P. V.**, Grigor’ev V. V.***

Komsomolsk-on-Amur State University (KnASU), 27, Lenin str., Komsomolsk-on-Amur, 681013, Russia

*e-mail: vmuravyev@mail.ru
**e-mail: mim@knastu.ru
***e-mail: grigorev.vlv@gmail.com

Abstract

This article presents the results of the study of specific defects forming while VT20 and VT23 titanium alloys electron-beam welding. It was established that the presence of capillary-condensed moisture, resided in the defects of the edges’ surface, impacts dominantly on the submicropores formation. Other conditions electron-beam welding conditions, which may lead to specific defects forming, were revealed. These conditions may include:

  • Improper assembling and preparation of the abutting edges for welding;

  • Electron-beam welding modes;

  • A solid-phase joint formation prior to the front of the molten bath;

  • Oscillatory processes of the electron beam (~0.5 mm), which may lead to uneven melting (due to insufficient temperature of the edges’ overall melting) over the grains boundaries with submicropores forming (less than 0.00025 mm), which cannot be detected by modern X-ray machines;

  • Hydrodynamic collapse of the crater leading to the root defect generation as peak-shaped formations.

It was revealed by radiographic control and scanning microscopy that defects in the form of dark stripes represented the chains of submicropores projected onto each other. It was established also that specific defects formed while electron-beam welding impacts significantly on the strength properties of welded joints, as well as on their destruction stadiality. The performed studies allowed make a conclusion on the necessity of monitoring such basic factors as the surface quality of the abutting edges for welding; electron beam focusing conditions, its power and oscillatory processes; and hydrodynamic instability in the weld penetration channel.

Keywords:

titanium alloys, permanent joints, component assembly, electron beam welding, load-bearing elements of flying vehicles, specific defects, pore formation, strength, impact strength, capillary-condensed moisture, fracture fractogram, surface defects of abutting edges, hydrogen distribution, hydrogen distribution, radiographic control

References

  1. Kablov E.N. Aviatsionnye materialy i tekhnologii, 2012, no. S, pp. 7-17.

  2. Antipov V.V. Aviatsionnye materialy i tekhnologii, 2012, no. S, pp. 157-167.

  3. Tarasov Yu.M., Antipov V.V. Aviatsionnye materialy i tekhnologii, 2012, no. 2(23), pp. 5-6.

  4. Nochovnaya N.A. Aviatsionnye materialy i tekhnologii, 2007, no. 1, pp. 4-8.

  5. Murav’ev V.I., Bakhmatov P.V., Frolov A.V. Perspektivnye metallurgicheskie i tekhnologicheskie proizvodstva, povyshayushchie nadezhnost’ izdelii iz konstruktsionnykh materialov (Promising metallurgical and technological production, enhancing reliability of the products made of structural materials), Komsomol’sk-na-Amure, KnAGTU, 2016, 330 p.

  6. Petukhov A.N. Aviatsionnye materialy i tekhnologii, 2007, no. 1, pp. 8-13.

  7. Khorev A.I. Materialy Mezhdunarodnoi konferentsii “Titan-2009 in the SNG” (17-20 May 2009, Odessa, Ukraine). Kiev, RIO IMF im. G.V. Kurdyumova NAN of Ukraine, pp. 288-301.

  8. Frolov V.A., Petrenko V.R., Peshkov V.V. et al. Tekhnologiya svarki plavleniem i termicheskoi rezki metallov (Technology of fusion welding and thermal cutting of metals), Moscow, Al’fa M, INFRA-M, 2011, 447 p.

  9. Khorev A.I. Trudy VIAM, 2013, no. 2. URL: http://www.viam-works.ru/ru/articles?art_id=12

  10. Il’in A.A., Kolachev B.A., Pol’kin I.S. Titanovye splavy. Sostav, struktura, svoistva (Titanium alloys. Composition, structure, properties), Moscow, VILS– MATI, 2009, 520 p.

  11. Grushin I .A., Mamontova N.A., Kuryshev E.A. Materialy Mezhdunarodnoi molodezhnoi nauchnoi konferentsii “XXXVIII Gagarinskie chteniya” (Moscow, 10-14 April 2012), Moscow, MATI, 2012, vol. 1, pp. 28-29.

  12. Pigalova E.A., Abramova A.A., Kurnikov N.A. Plasma welding application prospects while airplanes of mig brand production as one of the methods to reduce welding deformations. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 172-183.

  13. Redchits V.V., Frolov V.A., Kazakov V.A., Lukin V.I. Poristost’pri svarke tsvetnykh metallov (Porosity in non­ferrous metals welding), Moscow, Tekhnologiya mashinostroeniya, 2002, 448 p.

  14. Murav’ev V.I. Metallovedenie i termicheskaya obrabotka metallov, 2005, no. 7, pp. 30-37.

  15. Elektronno-luchevaya svarka, 2013. URL: https://stc- paton.com/rus/equipment/ebw04

  16. Braverman V.Ya., Belozertsev V.S., Litvinov V.P., Rozanov O.V. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, 2008, no. 2(19), pp. 148-151.

  17. Uspenskii N.V., Bogdanov V.V. Materialy VII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (11­13 November 2013) “Sovremennye problemy mashinostroeniya”, Tomsk, Natsional’nyi issledovatel’skii Tomskii politekhnicheskii universitet, 2013, pp. 219-221.

  18. Seidgazov R.D. Mezhdunarodnaya konferentsiya “Elektronno-luchevaya svarka i smezhnye tekhnologii” (17-20 November 2015), Moscow, MEI, 2015, pp. 554-565.

  19. Murav’ev V.I., Bakhmatov P.V. Svarka i diagnostika, 2016, no. 3, pp. 11-16.

  20. Tong H., Giedt W.H. A Dynamic Interpretation of Electron Beam Welding. Welding Journal, 1970, vol. 49, no. 6, pp. 259-266.

  21. Batanov V.A., Fedorov V.B. Pis’ma v ZhETF, 1973, vol. 17, no. 7, pp. 348-351.

  22. Andrews J.G., Atthey D.R. Hydrodinamic limit to penetration of a material by a high-power beam. Journal of Physics D: Applied Physics, 1976, vol. 9, no. 15, pp. 2181-2194. DOI: 10.1088/0022-3727/9/15/009

  23. Klemens P.G. J. Heat balance and flow conditions for electron beam and laser welding. Journal of Applied Physics, 1976, vol. 47, p. 2165. DOI: 10.1063/1.322866

  24. Saidgazov R.D., Senatorov Yu.M. Kvantovaya elektronika, 1988, vol. 15, no. 3, pp. 622-624.

  25. Grigor’ev V.V., Murav’ev V.I., Bakhmatov P.V. Svarochnoe proizvodstvo, 2019, no. 4, pp. 36-42.

  26. Mladenov G.M., Trushnikov D.N., Belen’kii V.Ya., Koleva E.G. Elektronno-luchevaya svarka (Electron beam welding), Perm, Permskii natsional’nyi issledovatel’skii polite khnicheskii universitet, 2014, 374 p.

  27. Grigor’ev V.V., Murav’ev V.I., Bakhmatov P.V. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2019, no. 1(706), pp. 20-28.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI