Interaction capabilities of air traffic control systems with structures ensuring airport aviation security

Aeronautical and Space-Rocket Engineering

Ground complexes, launching equipment, flying vehicle operation


DOI: 10.34759/vst-2021-3-194-201

Аuthors

Vlasova A. V.

Moscow State Technical University of Civil Aviation, 20, Kronshtadskiy Bulvar, Moscow, 125993, Russia

e-mail: arusya92@mail.ru

Abstract

The world civil aviation development, the traffic volumes increase, and the route network expansion implies, among other things, the quality improvement of aviation security systems, which, at present, acquire utter importance. All this stipulates the relevance of the presented scientific work. The degree of this issue development in scientific terms is not so high, since the problem of aviation security originated much later relative to other problems in the field of civil aviation, and does not have an appropriate scientific basis, which causes certain difficulties. Thus, the article explores the plan staging for the task of airport aviation security system improving based on integration of airport technical protection and air traffic control. The basic idea consists in the fact that at the present stage of their development the air traffic control (ATC) facilities possess strong scientific and technical capabilities of relevant objects detection and tracking, that is not always inherent in the means of aviation security in their area of responsibility. Hence, it is rather promising to explore the issue of joint application of technical means of both systems. Thus, it is necessary to understand herewith the historical incompatibility of these systems, which were created and developed to solve their local specific problems.

Hence, if a task of their aggregation to some extent, or joint application to solve the tasks of aviation security ensuring is being set, it is necessary to form a field of joint mutual interests, in which it will be possible to determine the identity of tasks and to formulate the requirements for shared facilities. Probably, information support for both systems may be their unifying foundation. Then the challenge of developing interface, solving the problem of the systems compatibility occurs. It is impossible herewith to get away from the problem of the compatibility criteria determining and solving many similar tasks. On the other hand , the problem solution of the aviation security systems and systems of air traffic control aggregation even in the first approximation may prod uce a significant effect, and not only economic. The article presents the setting of this complicated task and regards some approaches to its solution. The authors suggest herewith employing standard automated air trafic control systems as the basic structure of the complex system.

Thus, the author proposes to use the typical automated system of air traffic control as the basic structure of the integrated system.

Keywords:

aviation security, integration of aviation safety and air traffic control systems, information support of aviation safety systems

References

  1. Vozdushnyi kodeks RF (Air Code of the Russian Federation), Moscow, Os-89, 1998, 64 p.

  2. Donskov A.V. Analysis of modern evaluation and modeling methods of contingencies occurrence risks onboard a spacecraft. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 163-169.

  3. Elisov L.N., Ovchenkov N.I., Fadeev R.S. Vvedenie v teoriyu aviatsionnoi bezopasnosti (Introduction to the theory of aviation security), Yaroslavl, Filigran’, 2016, 320 p.

  4. Elisov L.N., Baranov V.V. Upravlenie i sertifikatsiya v aviatsionnoi transportnoi sisteme (Management and certification in aviation transport system), Moscow, Vozdushnyi transport, 1999, 352 p.

  5. Elisov L.N. Nauchnyi vestnik MGTU GA, 2004, no. 75(9), pp. 107-113.

  6. Elisov L.N., Gromov S.V., Ovchenkov N.I. Nauchnyi vestnik MGTUGA, 2012, no. 186, pp. 130-135.

  7. Elisov L.N., Ovchenkov N.I. Nauchnyi vestnik MGTUGA, 2012, no. 186, pp. 138-142.

  8. Logvin A.I., Lutina L.E. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Aktual’nye problemy i perspektivy razvitiya grazhdanskoi aviatsii Rossii”, 2017, pp. 46-51.

  9. AS UVD. Avtomatizirovannye sistemy upravleniya vozdushnym dvizheniem. Novye informatsionnye tekhnologii v aviatsii (AS ATC. Automated air traffic control systems. New information technologies in aviation), St. Petersburg, Politekhnika, 2004, 445 p.

  10. Bestugin A.R., Shatrakov Yu.G., Vel’kovich M.A. et al. Avtomatizirovannye sistemy upravleniya vozdushnym dvizheniem (Automated air traffic control systems), St. Petersburg, GUAP, 2013, 450 p.

  11. Ob utverzhdenii Federal’nykh pravil ispol’zovaniya vozdushnogo prostranstva Rossiiskoi Federatsii. Postanovlenie Pravitel’stva Rossiiskoi Federatsii ot 11.03.2010 № 138 (On Approval of the Federal Regulations for the Use of the Airspace of the Russian Federation. Decree of the Russian Federation of 11.03.2010 no. 138). URI: https://docs.cntd.ru/document/902207152

  12. Krasovskii N.N., Tret’yakov V.E. Upravlenie dinamicheskoi sistemoi (Dynamic system control), Moscow, Nauka, 1985, 199 p.

  13. Ho G.T.S., Tang Y.M., Tsang K.Y., Tang V., Chau K.Y. A blockchain-based system to enhance aircraft parts traceability and trackability for inventory management. Expert Systems with Applications, 2021, vol. 179. DOI: 10.1016/j.eswa.2021.115101

  14. Steno P., Alsadoon A., Prasad P.W.C. et al. A novel enhanced region proposal network and modified loss function: threat object detection in secure screening using deep learning. Journal of Supercomputing, 2021, vol. 77(4), pp. 3840-3869. DOI: 10.1007/s11227-020-03418-4

  15. Hasin F., Munia T.H., Zumu N.N., Taher K.A. ADS-B Based Air Traffic Management System Using Ethereum Blockchain Technology. 2021 International Conference on Information and Communication Technology for Sustainable Development (27-28 February 2021, Dhaka, Bangladesh), pp. 346-350. DOI: 10.1109/ICICT4SD50815.2021.9396828

  16. Xia C.Y., Hou C.-B., Guo C.-B., Zhang Z., Yang C.-R. Signal chain architectures for efficient airport surface movement radar video processing. Signal, Image and Video Processing (SIViP), 2021. DOI: 10.1007/s11760-021-01886-6

  17. Ertürk M.C., Hosseini N., Jamal H. et al. Requirements and Technologies towards Uam: Communication, Navigation, and Surveillance. Integrated Communications, Navigation and Surveillance Conference (ICNS), 2020, pp. 2C2-1-2C2-15. DOI: 10.1109/ICNS50378.2020.9223003

  18. Wu Z., Shang T., Guo A. Security Issues in Automatic Dependent Surveillance-Broadcast (ADS-B): A Survey. IEEE Access, 2020, vol. 8, pp. 122147-122167. DOI: 10.1109/ACCESS.2020.3007182

  19. Inderwildi O., King S.D. Energy, Transport, & the Environment. Addressing the Sustainable Mobility Paradigm, 2011, 726 p.

  20. Tawhid R., Braun E., Cartwright N. et al. Towards outcome-based regulatory compliance in aviation security. 20th IEEE International Requirements Engineering Conference (24-28 September 2012; Chicago, IL, USA), pp. 267-272. DOI: 10.1109/RE.2012.6345813


mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI