Design solutions forming technique with regard to the ground run control systems for the aircraft tricycle landing gear

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-2-51-61

Аuthors

Smagin A. A.*, Klyagin V. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: smagin_9595@mail.ru
**e-mail: kliagin@mail.ru

Abstract

Modern trends in aviation development lead to the emergence of new aircraft types and layouts, such as unmanned aircraft of the «flying wing» scheme and supersonic administrative aircraft. The layout limitations imposed by the adopted design decisions in terms of the modern aircraft appearance, lead in some situations to the non-standard ratios of the undercarriage base and the track. Changing proportions of the landing gear leads, in its turn, to the ground motion characteristics degradation. The existing techniques for the aircraft landing gear design do not imply the aircraft stability and controllability assessment in the process of design solutions selection for landing gear systems directly responsible for the ground motion control: the spectrum of these characteristics are evaluated already in the process of flight testing. Thus, the purpose of this work consists in proposing a technique for rational design solutions selecting in terms of ground motion control systems for the three-leg aircraft landing gear employing predictive modeling of runway going, which would allow identifying the aircraft negative specifics of controllability and stability, as well as eliminating them even prior to the aircraft creation.

The proposed approach is based on a predictive evaluation of stability characteristics, controllability and the range of operational limitations in ground motion, performed by mathematical modeling of the aircraft ground motion. To verify the results, experimental methods with the flight experiment data processing by means of mathematical statistics are used.

As the result of the suggested technique application for modernizing potential determining in terms of the landing gear of the aircraft being developed, it becomes possible not only to form the project decisions rational from the viewpoint of the weight efficiency (weigh reduction by the braking and steering-and-damping systems by several dozens of kilos), but obtain reliable estimation of the ground run characteristics with misalignment from the flight experiment by by 7–10% average as well.

The proposed methodology uses initial data in the scope of conceptual design and may be applied without significant modifications to the aircraft with the tricycle landing gear with nose support with takeoff weight not exceeding 40,000 kg and no more than two wheels on each landing gear leg. Predictive evaluation allows not only, if necessary, correcting the adopted design decisions at the stage of product development, which requires an order of magnitude less time and financial expenses than elimination of remarks after the flight tests, but estimating permissible operating conditions and restrictions on basing on various runways as well.

Keywords:

mono-carbon brake, autonomous taxiing system, wheel steering mechanism, anti-wheel-slip automation, lateral nosing-over, grappling coefficient

References

  1. Kapustin A.G. Nauka i innovatsii, 2019, no. 9(199), pp. 16-20.
  2. Pogosyan M.A., Liseitsev N.K., Strelets D.Yu. et al. Proektirovanie samoletov (Aircraft design), 5th ed, Moscow, Innovatsionnoe mashinostroenie, 2018, 864 p.
  3. Bespalov V.A. Kompleksnaya metodika proektirovaniya shassi samoleta (Complex methodology of designing aircraft landing gear). Doctor’s thesis, Nizhnii Novgorod, Nizhegorodskii gosudarstvennyi universitet im. N.I. Lobachevskogo,1996, 178 p.
  4. Bogacheva N.A., Zhukov A.D., Konovalov A.S. Aviatsionnye sistemy antiyuzovoi avtomatiki (Aviation systems of antiaircraft automatics), St. Petersburg, SPbGUAP, 1999, 84 p.
  5. Glikman B.F. Matematicheskie modeli pnevmogidravlicheskikh system (Mathematical models of pneumohydraulic systems), Moscow, Nauka, 1986, 368 p.
  6. Podruzhin E.G., Zagidulin A.R., Shinkarev D.A. Drop testing simulation of the mainline aircraft landing gear. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 106-117. DOI: 10.34759/vst-2021-4-106-117
  7. Kolyshev E.S., Krapivko A.V. Experimental methods for determining dynamic characteristics of aircraft landing gear. Aerospace MAI Journal, 2019, vol. 26, no. 4, pp. 66-80. DOI: 10.34759/vst-2019-4-66-80
  8. Kokonin S.S., Kramarenko E.I., Matveenko A.M. Osnovy proektirovaniya aviatsionnykh koles i tormoznykh sistem (Fundamentals of designing aircraft wheels and braking systems), Moscow, Izd-vo MAI, 2007, 264 p.
  9. Garganeev A.G., Kharitonov S.A. Doklady TUSURa, 2009, no. 2(20), pp. 179-184.
  10. Nadaraia T.G., Shestakov I.Y., Fadeev A.A. Aircraft landing gear wheels actuator. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 109-113.
  11. Bekhtina N.B. Nauchnyi Vestnik MGTU GA. Seriya Aeromekhanika i prochnost’, 2009, no. 138, pp. 183–190.
  12. Bogacheva N.A., Zhukov A.D. Mekhatronika, avtomatizatsiya, upravlenie, 2006, no. 11, pp. 6-9.
  13. Bogacheva N.A., Zhukov A.D., Zhukov S.A. Izvestiya VUZov. Priborostroenie, 2011, vol. 54, no. 8, pp. 62–65.
  14. Grebenkin A.V. Nauchnyi Vestnik MGTU GA, 2011, no. 172, pp. 12–18.
  15. Kublanov M.S. Nauchnyi Vestnik MGTU GA. Seriya Aeromekhanika i prochnost’, 2006, no. 97, pp. 88–93.
  16. Kublanov M.S., Bekhtina N.B. Voprosy stroitel’noi mekhaniki i nadezhnosti mashin i konstruktsii. Sbornik statei, Moscow, MADI (GTU), 2008, pp. 60–71.
  17. Gozdek V.S. Uchenye zapiski TsAGI, 1984, vol. 15, no. 2, pp. 90-99.
  18. Dedkov V.K. AN SSSR. Nauchnyi sovet po treniyu i smazke. Vypusk «Trenie tverdykh tel», Moscow, Nauka, 1964, pp. 5-26.
  19. Kragel’skii I.V., Vinogradova I.E. Koeffitsienty treniya: Spravochnoe posobie (Friction coefficients: Reference Manual), Moscow, Mashgiz, 1962, 31 p.
  20. Lapshin E.V. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost’ i kachestvo», 2017. vol. 1, pp. 257-259.
  21. Mozolyako A.V., Akimov A.N., Vorob’ev V.V. Nauchnyi Vestnik MGTU GA, 2014, no. 204, pp. 74–77.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI