Numerical Studies on the Flow-Through Channel Shape Selection for the Engine Nacelle of a Long-Haul Aircraft Aerodynamic Model

Aeronautical and Space-Rocket Engineering


Аuthors

Novogorodtsev E. V.*, Savel’ev A. A., Dugin D. I.**, Krutov A. A.***, Matyash E. S., Pigusov E. A.****

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: novogorodtseve91@mail.ru
**e-mail: dmitriy.dugin@phystech.edu
***e-mail: aleksandr.krutov@tsagi.ru
****e-mail: evgeniy.pigusov@tsagi.ru

Abstract

A turbofan running in the layout with the aircraft airframe affects significantly its aerodynamics. However, full-fledged modeling of a jet stream from the engine nozzles while conducting experimental studies of the aircraft model flow-around in the wind tunnels does not seem possible. As a rule, the engine on the model is represented while experiments conducting in the form of the so-called flow-through engine nacelle. The purpose of the presented study consists in selecting the flow-through engine nacelle shape for the aerodynamic model of a long-haul aircraft, for which aerodynamic characteristics of the said model would be the most close to the long-haul aircraft aerodynamic characteristics under the flight conditions with running bypass turbofan.

Selection is being performed by comparing numerical modeling results of the long-haul aircraft flow-around at the cruising flight mode with the engine modeling by the “active disk” method with results of the aircraft, equipped with various options of flow-through engine nacelles, flow-around modeling. Numerical modeling was being accomplished based on the RANS-SST approach. The lift coefficient Cyа, the drag coefficient Cxа, the total aerodynamic quality K and the coefficient of the air flow rate through the control cross-section of the engine nacelle f, were being computed by the numerical modeling results.

The results of the aircraft flow-around numerical modeling together with the running engine revealed the flow acceleration occurrence at the lower wing surface up to M ≈ 1.4 in the area of the flow narrowing between the lower wing surface, pylon side surfaces and the streamline surface of the high-pressure jet, flowing from the secondary flow nozzle. The said areas are being characterized by the static pressure fall and the presence of the terminal shock waves, which leads to the lift coefficients Cya degradation and growth of the drag coefficients Cxa.

The presented research studied four different options of the flow-through engine nacelles. The numerical studies results allowed revealing that the lack of jet ejection out of the fan nozzle modeling leads to augmentation of the Cxа and Cyа coefficients values for all options of the studied nacelles. As the result of the research, two options of the flow-through engine nacelles, ensuring aerodynamic characteristics of a long-haul aircraft under cruise flight conditions closest to the ones of an aircraft with running turbofan, were developed. The discrepancy between the values of the Cxа and Cyа coefficients obtained for a long-haul aircraft equipped with these flow-through nacelles compared to the computational fluid dynamics results with the jet ejection modeling is about 5%, and the values of aerodynamic quality K differ by less than 1%.

Keywords:

long-haul aircraft power plant flow-around numerical modeling, long-haul aircraft power plant engine nacelle, bypass turboprop engine, aerodynamic external drag factor, lift coefficient, total aerodynamic quality, long-haul aircraft

References

  1. Chernysheva S.L. (ed) Forsait razvitiya aviatsionnoi nauki i tekhnologii do 2030 goda i na dal'neishuyu perspektivu (Foresight of the development of aviation science and technology until 2030 and for the future), Zhukovsky, TsAGI, 2014, 280 p.

  2. Inozemtsev A.A., Sandratskii V.L. Gazoturbinnye dvigateli (Gas turbine engines), Perm, Aviadvigatel', 2006, 1204 p.

  3. Savel'ev A.A. Raschetnye issledovaniya obtekaniya motogondol grazhdanskikh samoletov s uchetom laminarno-turbulentnogo perekhoda i metodika avtomatizirovannogo proektirovaniya ikh formy (Computational studies of the flow around the nacelles of civil aircraft, taking into account the laminar-turbulent transition and the methodology of computer-aided design of their shape). PhD. thesis, Zhukovsky, TsAGI, 2019, 118 p.

  4. Lysenkov A.V. Uchenye zapiski TsAGI, 2023, vol. 54, no. 1, pp. 47-59.

  5. Peters A., Spakovszky Z.S., Lord W.K., Rose B. Ultra-short nacelles for low fan pressure ratio propulsors. Journal of Turbomachinery, 2014, vol. 137, no. 2: 021001. DOI: 10.1115/1.4028235

  6. Savelyev A.A., Mikhaylov S. V., Zlenko N.A. Aerodynamic inlet design for civil aircraft nacelle. 29th Congress of the International Council of the Aeronautical Sciences (07-12 September 2014; St. Peterburg, Russia).

  7. Tejero F., MacManus D.G., Matesanz-Garcia J. et al. Towards the Design and Optimisation of Future Compact Aero-Engines: Intake/Fancowl Trade-off Investigation. International Journal of Numerical Methods for Heat and Fluid Flow, 2023, vol. 33, no. 4, pp. 1319-1335. DOI: 10.1108/HFF-06-2022-0366

  8. von Geyr H., Rossow C. A Correct Thrust Determination Method for Turbine Powered Simulators in Wind Tunnel Testing. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (10-13 July 2005; Tucson, Arizona). DOI: 10.2514/6.2005-3707

  9. Campomanes C.S. External Flow Effects in the Engine/Airframe Integration Testing Technique: A New Thrust/Drag Bookkeeping Approach at the German-Dutch Wind Tunnels. Msc Thesis. Delft University of Technology, 2017.

  10. Magrini A., Benini E., Yao H. et al. A review of installation effects of ultra-high bypass ratio engines. Progress in Aerospace Sciences, 2020, vol. 119: 100680. DOI: 10.1016/j.paerosci.2020.100680

  11. Garcia J.M., MacManus D., Tejero F. et al. Coupled propulsive and aerodynamic analysis of an installed ultra-high bypass ratio powerplant at high-speed and high-lift conditions. AIAA AVIATION Forum (12-16 June 2023; San Diego, CA and Online). DOI: 10.2514/6.2023-3466

  12. Byushgens G.S. (ed.) Aerodinamika i dinamika poleta magistral’nykh samoletov (Aerodynamics and flight dynamics of mainline aircraft), Moscow – Pekin, TsAGI, Avia-izdatel’stvo KNR, 1995, 772 p.

  13. Reinol’ds O. Dinamicheskaya teoriya dvizheniya neszhimaemoi vyazkoi zhidkosti i opredelenie kriteriya. IN: O. Reinol’ds. Problemy turbulentnosti: Sbornik statei. Moscow – Leningrad, ONTI, 1936, pp. 135-227.

  14. Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techenii (Turbulence modeling in calculations of complex flows), St. Petersburg, Politekhnicheskii universitet, 2012, 88 p.

  15. Menter F.R. Zonal two equation k-ω turbulence models for aerodynamic flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference (06-09 July 1993; Orlando, FL, USA). DOI: 10.2514/6.1993-2906

  16. Pirogov S.Yu., Yur'ev A.S., Tipaev V.V., Makhrov A.S. A numerical stream simulation for external-compression inlet with energy supply into incoming supersonic flow. Aerospace MAI Journal, 2009, vol. 16, no. 3, pp. 154-159.

  17. Novogorodtsev E.V., Karpov E.V., Koltok N.G. Characteristics improvement of spatial fixed-geometry air intakes of external compression based on boundary layer control systems application. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 7-27. DOI: 10.34759/vst-2021-4-7-27

  18. Novogorodtsev E.V., Kazhan V.G., Koltok N.G., Chanov M.N. Computational studies on the air intake of the power plant mounted in the mainline aircraft wing root. Aerospace MAI Journal, 2023, vol. 30, no. 4, pp. 7–18. URL: https://vestnikmai.ru/publications.php?ID=177602

  19. Kazhan E.V., Korotkov Y.V., Lysenkov A.V., Orekhovskii V.V., Arkhipov A.V. Aerodynamic performance of intake pack on upper surface of subsonic aircraft tail section. Aerospace MAI Journal, 2023, vol. 30, no. 4, pp. 34-45. URL: https://vestnikmai.ru/publications.php?ID=177605

  20. Bosnyakov S.M. Trudy TsAGI. No. 2671. Zhukovsky, Izdatel'skii otdel TsAGI, 2007, pp. 3–19.

  21. Vlasenko V.V. Trudy TsAGI. No. 2671. Zhukovsky, Izdatel'skii otdel TsAGI, 2007, pp. 20–85.

  22. Mikhailov S.V. Matematicheskoe modelirovanie, 2017, vol. 29, no. 9, pp. 49–61.

  23. Babulin A.A., Bosnyakov S.M., Matyash S.V., Mikhailov S.V. Trudy TsAGI. No. 2671. Zhukovsky, Izdatel'skii otdel TsAGI, 2007, pp. 126–142.

  24. Bosnyakov S.M., Vlasenko V.V., Engulatova M.F. et al. Trudy TsAGI. No. 2735, Zhukovsky, Izdatel'skii otdel TsAGI, 2015, pp. 50–89.

  25. Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, Inc., 3rd ed. 2006, 522 p.

  26. Blishch V.G. Trudy TsAGI. No. 2328. Zhukovsky, Izdatel'skii otdel TsAGI, 1987, 16 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI