Applied Mathematics, Mechanics and Physics
Аuthors
1*, 2**1. National Transport University, Suvorova str., Kyiv, 01010, Ukraine
2. Lviv Ivan Franko National University, Universitetska str., Lviv, 79000, Ukraine
*e-mail: vladislav_bogdanov@hotmail.com
**e-mail: sulym@franko.lviv.ua
Abstract
A new finite-difference method of numerical solution for dynamic plane problems of elastic-plasticity theory taking into account unloading processes is proposed. A plane stress state for the three-point bar bending is considered and some solutions for the bars with rectangular cross-sections and the middle notch modeling the crack have been obtained. The plastic strain areas around the crack tips in different alloys are compared.The considered specimen is loaded by the impact of the absolutely rigid striker. Due to the short interaction time the dynamic load can be approximated by the pressure at the contact area varying in time as a linear function. Both the contact and bearing areas are constant. The theory of non-isothermal flow of strengthening plastic media, the Huber-Mizes yield criteria, and the hypothesis of short-term creep are used. We also suppose that the material is strengthening during the elastic-plastic deformation process. The successive approximation approach is used for the physically nonlinear problems solution together with the variable- step finite difference schema.
The numerical solutions are computed for compact specimens made of RPV steel 15Х2НМФА, aluminum, titanium and silver. The areas of plastic deformations at the top of the notch-crack for the alloys with different shear and bulk modulus are compared. It is shown that rising of the ratio between the shear and bulk modulus results rising of plastic zones at the top of crack-notches.
Keywords:
compact specimen, plastic deformation, marginal incision, plane problem, impact loadingReferences
- MedvedskiiA.L., Tarlakovskij D.V. Vestnik Moskovskogo aviacionnogo instituta, 2011, vol.18, no.6, pp. 125-132.
- Kubenko V.D., Gavrilenko V.V., Tarlakovskij D.V. Dopovidi Nacionalnoi Akademii Nauk Ukraini, 2008, no.1, pp. 59- 65.
- Kubenko V.D. Dopovidi Nacionalnoi Akademii Nauk Ukraini, 2007, no.4, pp. 58-65.
- Kubenko V.D. Dopovidi Nacionalnoi Akademii Nauk Ukraini, 2008, no.1, pp. 58-67.
- Nemirovskii Yu.V., Romanova T.P. Dinamicheskoe soprotivlenie ploskikh plasticheskikh pregrad (Dynamical Strength ofthe Plane Plastic Bodies), Novosibirsk, Geo, 2009, 311p.
- Bogdanov V.R., Sulym G.T. Teoreticheskaja iprikladnaja mehanika, Donetsk, 2010, no.47, pp. 59-66.
- Bogdanov V.R., Sulim G.T. Visnik Kiivskogo nacionalnogo universitetutu, Serija fiziko-matematichni nauki, 2010, no.4, pp. 51-54.
- Bogdanov V.R., Sulim G.T. Visnik Lvivskogo nacionalnogo universitetutu, Serija fiziko-matematichni nauki, 2010, issue73, pp. 192-204.
- Bogdanov V.R., Sulym G.T. Problemi obchisljuvalnoї mehaniki imicnosti konstrukcij, Collection ofArticles, Dnipropetrovsk, 2011, no.15, pp. 33-44.
- Bogdanov V.R. Visnik Kiїvskogo nacionalnogo universitetutu, Serija fiziko-matematichni nauki, 2008, no.3, pp. 51-56.
- BogdanovV.R., Sulim G.T. Fiziko-khimicheskie mekhanicheskie materialy, 2010, no.6, pp. 16-24
- Teoriya plastichnosti (Theory ofPlasticity), Moscow, Inostrannaja Literatura, 1948, 460p.
- Arkulis G.E., Dorogobid V.G. Teorija plastichnosti (Theory ofPlasticity), Moscow, Metallurgija, 1987, 352p.
- Makhnenko V.I. Raschetnye metody issledovanija kinetiki svarochnyh naprjazhenij ideformacij (ACalculation Methods ofInvestigation ofKinetic ofWelded Stresses and Deformations), Kiev, Naukova dumka, 1976, 320
- Khemming R.V. Numerical methods for scientists and engineers, 2ded, New York, McGraw-Hill, 1973, 721p.
- Savruk M.P. Mehanika razrushenija iprochnost materialov, Kojefficienty intensivnosti naprjazhenij vtelah streshhinami (Mechanics ofDestruction and strength ofthe Materials, Stress Intensity Factors ofBodies with Cracks), Kiev, Naukova dumka, vol.2, 1988, 620p.
- Zyukina E.L. Trudy matematicheskogo centraim. N.I. Lobachevskogo, Kazan, 2004, vol.26, pp. 151-160.
- Popov S.N. Prikladnaja mehanika, 1989, vol.25, no.12, pp. 41-47.
- WeisbrodG., Rittel D. Amethod for dynamic fracture toughness determination using short beams, International Journal ofFracture, 2000, no.104, pp. 89-103.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |