Applied Mathematics, Mechanics and Physics
Аuthors
1, , , , 2*, , 3, 1**1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. ,
3. Central Research Institute of Machine Building, 4, Pionerskaya st., Korolev, Moscow region, 141070, Russia
*e-mail: krylov@mai.ru
**e-mail: filippova.alex@gmail.com
Abstract
Purpose
The research into the fundamental astrometry problem of high-accurate interpolation and prognosis of the rotational-oscillatory motion of the deformable Earth according to the International Earth Rotation and Reference Systems Service (IERS) observations for navigation applications.
Design/methodology/approach
The improvement of the ephemeris-time support accuracy problem in satellite navigation systems is connected with the fundamental problem of the Earth orientation parameters (EOP) determination: with the Earth pole oscillations and length of the day variations in the short time intervals in particular. In this paper the mathematical models for the Earth pole coordinates shift and for the time scales desynchronization between UT1 and UTC (dUT1) are shown, that agree with the IERS. The significant improvement of the prognosis accuracy is achieved by taking into account the perturbations of the oscillatory-rotational motion of the Earth in the space vehicle (SV) motion equations.
Findings
The graphics of the diurnal prognosis error of the Global Navigation System (GLONASS) navigation satellites are presented that is caused by the Earth pole shift. A comparative analysis shows that the perturbations of the navigation satellites orbits are comparable to the gravitational impact from the Moon and the Sun and to the perturbations from the irregular part of the Earth gravitational field.
Research limitations/implications
High-accuracy information about EOP is required on the SV for solving navigation problems. It is shown that the introduced models are able to provide self- sufficiency for the SV to calculate EOP on its own.
Keywords:
navigation, prognosis, mathematical model, Earth pole, Earth orientation parameters, space vehicle, Universal timeReferences
- Belyanko E.A., Krasnopolskii I.A., Mikhailov M.V., Rozhkov S.N., Semenov A.S. Kosmonavtika i Raketostroenie, 2011, vol.65, no.4, p. 111-121.
- Globalnaya navigatsionnaya sputnikovaya sistema GLONASS. Interfeisnyi kontrolnyi dokument, pyataya redaktsiya (Global Satellite Navigation System GLONASS. Interface Control Document), Moscow, Koordinatsionnyi nauchno— informatsionnyi tsentr Rossiiskoi federatsii, 2002, 57p.
- International Earth Rotation and Reference Systems Service, IERS Annual Reports, availableat: www.iers.org
- Fedulov R.V., Mikhailov M.V., Rozhkov S.N. Kosmonavtika i raketostroenie, 2009, vol.55, no.2, p. 111- 120.
- Perepelkin V.V., Pochukaev V.N., Timoshin D.S. Kosmonavtika i raketostroenie, 2011, vol.65, no.4, p. 47- 55.
- Akulenko L.D., Klimov D.M., Markov Yu.G., Pochukaev V.N. Kosmonavtika i raketostroenie, 2012, vol.69, no.4, p. 100-107.
- Akulenko L.D., Markov Yu.G., Perepelkin V.V. Doklady Physics, 2009, vol.54, no.5, p. 233-237.
- Markov Yu.G., Mikhailov M.V., Pochukaev V.N. Doklady Physics, 2012, vol.57, no.7, p. 276-280.
- Krylov S.S., Markov Yu.G., Perepelkin V.V. Doklady Physics, vol.58, no.4, p. 156-160.
- Markov Yu.G., Mikhailov M.V., Pochukaev V.N. Doklady Physics, 2013, vol.58, no.7, p. 314-318.
- Akulenko L.D., Markov Yu.G., Perepelkin V.V., Filippova A.S., Rykhlova L.V. Astronomicheskii zhurnal, 2013, vol.57, no.5, p. 391-399.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |