Geometric models of automated layout aircrafts

Aeronautical and Space-Rocket Engineering

Aeronautical engineering


Аuthors

Markin L. V.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: markinl@list.ru

Abstract

The article reviews a problem of layout design automation for aerospace engineering. It is shown that the complexity of this process is stipulated by the difficulty of information representation concerning geometric shape of an object being arranged in the computer.

The article presents the main types of geometric models describing the shape of objects being arranged, their classification and application areas. We describe an automated layout problem as a problem of placement of a certain group of objects of specified sizes and shapes within a confined space. The task of automated layout is formulated as mathematical programming optimization problem of for maximum allocation tightness of objects being arranged. We present optimization criterion of this process that is space factor of a space being arranged by objects allocated inside it, as well as limitations of this optimization problem.

The article also describes well-known methods of automated layout. Powered by article analysis shows that they are implemented only for objects of simple geometric shapes — primitives. Proposed a method for automated layout, based on mathematical formalism of normal equations. The concept of objects normal equations was introduced by V.L. Rvachev. This article describes the original methods of normal equations building for both flat and tridimensional objects. It is shown that application of normal equations of objects being arranged allows you to create intelligent layout algorithms, reducing in terms of geometry the position problem of allocation of objects being arranged to the metric one. The paper shows additional options of objects normal equations for automated layout problems, such as equidistant object building. We display the problems that should be solved for a wide use of normal equations apparatus in automated layout practice.

Keywords:

computer-aided design, automated layout, geometric models, optimization, and tight allocation, normal equations.

References

  1. Semenkov O.I. Avtomatizatsiya proektno-konstruktorskikh rabot i tekhnologicheskoi podgotovki proizvodstva v mashinostroenii (Research and Development Work Automation and Technological Preparation of Production in Mechanical Engineering), Minsk, Vysshaya shkola, 1976, vol. 1, 352 p.
  2. Avedyan A.B., Bibikov S.Yu., Markin L.V. Komponovka samoletov (Planes layout), Moscow, MAI, 2012, 296 p.
  3. Stoyan Yu.G., Yakovlev S.V. Matematicheskie modeli i optimizatsionnye metody geometricheskogo proektirovaniya (Mathematical models and optimization methods for geometric design), Kiev, Naukova dumka, 1986, 268 p.
  4. Sithu L., Htun N.N., Markin L.V. Elektronnyi zhurnal «Trudy MAI», 2011, no. 47, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=26825 (accessed 20.10.2011).
  5. Nyi N.H., Markin L. V., Sosedko A. A. Elektronnyi zhurnal «Trudy MAI», 2014, no. 72, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=47438 (accessed 27.01.2014).
  6. Stoyan Yu.G., Gil N.I. Metody i algoritmy razmeshcheniya ploskikh geometricheskikh ob’’ektov (Methods and algorithms for the placement of flat geometric objects), Kiev, Naukova dumka, 1976, 249 p.
  7. Rvachev V.L. Geometricheskie prilozheniya algebry logiki (Geometric applications of Boolean algebra), Kiev, Tekhnika, 1967, 213 p.
  8. Rvachev V.L. Teoriya R-funktsii i nekotorye ee prilozheniya (The R-functions theory and some of its applications), Kiev, Naukova dumka, 1982, 552 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI