Combined electric power complex modular and scalable architecture for all-electric aircraft electric power systems

Electrical Engineering

Electrical engineering complexes and systems


Аuthors

Reznikov S. B.1*, Kiselev M. A.2**, Moroshkin Y. V.2***, Mukhin A. A.2****, Kharchenko I. A.3*****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. State Institute of Aviation Systems, 7, Victorenko str., Moscow, 125319, Russia
3. Central Research and Development Testing Institute of the Engineering Troops of the Ministry of Defense of the Russian Federation, Nakhabino-2, Moscow region, 143432, Russia

*e-mail: rezn41@mail.ru
**e-mail: makiselev@2100.gosniias.ru
***e-mail: yvmoroshkin@2100.gosniias.ru
****e-mail: aamuhin@2100.gosniias.ru
*****e-mail: igor8p5@yandex.ru

Abstract

The all-electric (more electric) aircraft (MEA, РОА, МОЕТ) concept is currently the main trend in the development of the perspective aircraft power system both in the Russian Federation and abroad. This concept assumes the replacement of aircraft pneumatic and hydraulic actuators by electric (or electro-hydraulic) ones, as well as transmission generators' constant speed drives elimination.

The total rated capacity of MEA aircraft electric power supply system can reach up to 1,5 MW. To ensure the specified quality of the electric energy at the consumers inputs and mutual backup, its distributing channels should e connected in paralles. Thus, each channel should contain a higher voltage (270 V or 540 V) DC link in addition to the low voltage (27 V) central distribution unit with battery. These higher voltages are no used for feeding the distribution unit buses due to the complexity of arcless commutation provision. Thus, each MEA electric power supply channel is an independent combined AC-DC complex with four types of the central and peripheral distributing units: 115/200 V, 360... 800 Hz; 115/200 V, 400 Hz; ± 27 V and ± 270 (540) V. Electronic secondary power supplies interconnect these units with each other.

The authors suggest the structure of combined electric power complex with secondary power supplies' modular and scalable architecture for all-electric aircraft power supply systems with increased power-to-weight ratio based on unified multipurpose switched mode converters. This structure ensures parallel operation of both supply channels to improve electric energy quality.It reckons multiple mutual redundancy of the circuits for essential consumers feeding, and allows unify multifunctional switched mode converters, constituting it.

The considered above nonconventional MPC circuit solutions provide the required electric power quality in static and dynamic modes, high specific power (per unit mass and volume) and increased functional reliability. These solutions are protected by Russian Federation priority and provide high extent of import substitution in listed products of power electronics.

Keywords:

power electronics, multipurpose switched mode converters, all-electric aircraft, reversible rectifier-invertor converter, bidirectional invertor-rectifier converter, reversible switched mode converter, bidirectional frequency converter

References

  1. Levin A.V., Musin S.M., Kharitonov S.A., Kovalev K.L., Gerasin A.A., Khalyutin S.P. Elektricheskii samolet: kontseptsiya i tekhnologii (Electrical plane: concepts and technologies), Ufa, UGATU, 2014, 388 p.

  2. Reznikov S.B., Bocharov V.V., Kharchenko I.A. Elektromagnitnaya i elektroenergeticheskaya sovmestimost sistem elektrosnabzheniya i vtorichnykh istochnikov pitaniya polnost'yu elektrifitsirovannykh samoletov (Electromagnetic and electric power compatibility of power supply systems and secondary power sources of all-electric aircraft), Moscow, MAI, 2014, 160 p.

  3. Sistemy elektrosnabzheniya samoletov i vertoletov. Obshchie trebovaniya i normy kachestva elektroenergii. GOST R 54073-2010 (Power supply systems of airplanes and helicopters. General requirements and standards of power quality. State Standart R 54073-2010), Moscow, Standartinform, 2011, 34 p.

  4. Reznikov S.B., Bocharov V.V., Konyakhin S.F., Parfenov E.V. Silovaya elektronika, 2011, no. 3, pp. 4-6.

  5. Reznikov S.B., Bocharov V.V, Kharchenko I.A., Lavrinovich A.V. Prakticheskaya silovaya elektronika, 2014, no. 4 (56), pp. 17-26.

  6. Reznikov S.B., Kharchenko I.A., Lavrinovich A.V. Prakticheskaya silovaya elektronika, 2015, no. 1 (57),pp. 46-55.

  7. Reznikov S.B., Kharchenko I.A., Lavrinovich A.V. Prakticheskaya silovaya elektronika, 2015, no. 3 (59), pp. 35-42.

  8. Reznikov S.B., Kharchenko I.A., Lavrinovich A.V. Prakticheskaya silovaya elektronika, 2016, no. 1 (61), pp. 39-46.

  9. Reznikov S.B., Kharchenko I.A., Averin S.V., Lavrinovich A.V. Vestnik Moskovskogo aviatsionnogo instituta, 2015, no. 4, pp. 129-141.

  10. Reznikov S.B., Bocharov V.V., Kharchenko I.A., Lavrinovich A.V. Prakticheskaya silovaya elektronika, 2014, no. 1 (53), pp. 6-11.

  11. Reznikov S.B., Klimova S.R., Kharchenko I.A., Smirnov V.N., Savost'yanov V.V. Silovaya elektronika, 2016, no. 2, pp. 64-68.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI