A spacecraft solar batteries panels strength calculation

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Khmelnitskii Y. A.*, Salina M. S.**, Kataev Y. A.

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: ya_khmelnitsky@mail.ru
**e-mail: 2707fm@mail.ru

Abstract

The solar battery panels can be divisible by construction into the following types:

– Solar batteries with panels in the form of a frame with the stretched net-like fabric (net-like fabric panel);

– Solar batteries with panels in the form of a frame with orthogonally stretched strings (a string panel);

– Solar batteries with panels in the form of a frame with the stretched flexible film (a film panel);

– Solar batteries in the form of three-layer panels with a honeycomb core (a panel with a honeycomb core);

– Solar batteries with three-layer panels of integral construction (an integral panel).

The structures analysis of various panels reveals that at present all world firms employ generally three-layer panels with honeycomb core.

The structure of such panel consists of carbon fiber-reinforced plastic encasement and a metal honeycomb core.

Pursuing a goal of developing the rigid and light panel, recommendations on selection of carbon fiber-reinforced plastic, honeycomb core, adhesive film and dielectric film are issued based on experiments.

It allowed create lightweight rigid design structure of a solar panel. It was necessary herewith to perform strength, rigidness calculations and vibrations under effect while transportation and operation.

The stress-strain state of panels, forms and natural frequencies were being defined. Calculations were performed by a finite element method in MSC/Nastran.

CQAD4 sheathing element was selected for encasement and honeycomb cores modelling. The CQAD4 element accounts for all internal forcing factors and the encasement geometry, since it perceives membranous, shear, transversal and flexural loadings.

Calculations reveal that tension, occurring in the elements of the offered light-weight structure, have considerable safety margin, and high rigidity at which the maximal shifts do not exceed 0.05 mm, while oscillation frequencies change in within range of 16-91 Hz. The three-layer panel specific mass herewith is only 1.27 kg/m2. The structure opens possibilities for further improvement.

Keywords:

three-layer solar battery panel, carbon composite covering, finite element method, panel strength, panel rigidity, panel natural frequency, CQAD4 shell element

References

  1. Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Fizika i tekhnika poluprovodnikov, 2004, vol. 38, no. 8, pp. 937-948.

  2. Fahrenbruch A.L., Bube R.Н. Fundamentals of solar cells: Photovoltaic solar energy conversion. New York, Academic Press, 1983, 580 p.

  3. Okorokova N.S., Pushkin K.V., Sevruk S.D., Farmakovskaya A.A. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 4, pp. 115-122.

  4. Khmel'nitskii Ya.A., Shirina O.V. Sbornik trudov II Mezhdistsiplinarnogo molodezhnogo nauchnogo foruma s mezhdunarodnym uchastiem (01-04 June 2016, Sochi) “Novye materialy”, Moscow, Interkontakt Nauka, 2016, pp. 28-30.

  5. Bakulin V.N., Borzykh S.V., Il'yasova I.R. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 3, pp. 295-302.

  6. Rauschenbach H.S. Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion. New York, Van Nostrand Reinhold Co., 1980, 549 p.

  7. Bratukhin A.G., Ivanov Yu.L., Mar'in B.N. Sovremennye tekhnologii aviastroeniya (Modern aircraft technology), Moscow, Mashinostroenie, 1999, 832 p.

  8. Matthews F.L. and Rawlings R.L. Composite Materials: Engineering and Science. Cambridge, CRC Press, Woodhead Publishing, 1999, 480 p.

  9. Bolotin B.B., Novichkov Yu.N. Mekhanika mnogosloinykh konstruktsii (Mechanics of multilayer structures), Moscow, Mashinostroenie, 1980, 375 p.

  10. Kling D, Elsayed E.A. and Basily B.B. Manufacturing process for folded sheet material. Proceedings of the NSF Design and Manufacturing Research Conference, San Juan, 6-10 January 2002, pp. 1552-1562.

  11. Roeseler W.G., Sarh B., Kismarton M.U. Composite structures: the first 100 years. 16th International Conference on Composite Materials, 2007, 10 p.

  12. Grashchenkov D.V., Chursova L.V. Aviatsionnye materialy i tekhnologii, 2012, no. 5, pp. 231-242.

  13. Turanov R.A. Sovremennye naukoemkie tekhnologii, 2013, no. 8-2, pp. 230-231.

  14. Fitzer E. Carbon Fibres and Their Composites. Springer-Verlag Berlin HeidelBerg New York Tokyo, UNFSSTD, 2011, 296 p.

  15. Bratukhin A.G., Bogolyubov V.S., Sirotkin O.S. Tekhnologiya proizvodstva izdelii i integralnykh konstruktsii iz kompozitsionnykh materialov v mashinostroenii (Manufacturing techniques of products and integrated structures of composite materials in mechanical engineering), Moscow, Gotika, 2003, 516 p.

  16. Belov O.A., Berdnikova N.A., Babkin A.V., Kozlov M.V., Belov D.A. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 115-122.

  17. Kataev Yu.P. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2015, no. 3, pp. 49-55.

  18. 18. Sachenkov A.B. Issledovaniya po teorii plastin i obolochek. Sbornik statei. Kazan, Kazanskii universitet, 1970, no. 6-7, pp. 391-433.

  19. Zienkiewicz O.C. The Finite Element Method in Engineering Science. USA, McGraw-Hill Companies, 1971, 521 p.

  20. Vakhitov M.B. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 1966, no.3, pp. 50-61.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI