Correlation-regressive model for small-sized aircraft gas turbine engines mass computation

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Filinov E. P.*, Avdeev S. V.**, Krasil'nikov S. A.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: filinov@ssau.ru
**e-mail: avdeevsergeyvik@gmail.com
***e-mail: krasilnikov28Sergey@yandex.ru

Abstract

The article suggests several new correlation-regressive models for the aircraft small-sized gas-turbine engines mass computation at the stage of their conceptual design.

A database of the main data and thermodynamical parameters for mass computation of dual-flow turbojet engines was formed. The database includes 92 small-sized turbojets with the thrust less than 50 kN. Equations allowing compute the engine mass at the initial stage of design were derived by correlation-regressive method based on the accumulated statistics.

Model No. 1 uses the total air flow through the engine as an input parameter. The approximating function coefficients were determined based on 88 turbofan engines. The relative standard deviation value for this model was 25.5%.

Model No. 2 uses engine thrust as an input parameter. The approximating function coefficients were determined based on 92 turbofan engines. The the relative root-mean-square deviation value for this model was 18.6%.

The mass model No. 3 uses three input parameters: engine thrust, overall pressure ratio, by-pass ratio. This model involved 77 turbofan engines. The relative root-mean-square deviation value of this model was 13.4%.

The fourth model uses the total air flow, overall pressure ratio, gas temperature in front of the turbine, bypass ratio for calculating the mass.

Statistical coefficients for this model were determined based on 57 turbofan engines. The relative root-mean-square deviation value for this model was 10.1%.

The Kuzmichev mass model depends on five parameters of the gas turbine engine: Mдв = f (m,πкΣ,Gв,T*г, πв) . The total number of engines used in the statistics was 52. The relative root-mean-square deviation value of this model was 13.5%.

Based on the results obtained, we can draw the following conclusions: at the stage of the gas turbine engine conceptual design, the most preferrable models are model No. 4 and Kuzmichev's model. Models No. 1, No. 2 and No. 3, are most preferable for preliminary estimation of the mass of the propulsion system while an aircraft design.

Keywords:

mathematical model, correlation-regressive coefficients, small-sized gas-turbine engine, preliminary mass evaluation, conceptual design stage

References

  1. Titov A.V., Osipov B.M. Innovatsionnaya nauka, 2016, no. 11-2, pp. 74-45.

  2. Mikhailova A.B., Mikhailov A.E., Akhmedzyanov D.A. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2014, vol. 18, no. 1(62), pp. 180-185.

  3. Politova I.D. Dispersionnyi i korrelyatsionnyi analiz v ekonometrike (Dispersion and correlation analysis in econometrics), Moscow, Delo, 1998, 248 p.

  4. Zrelov V.A., Maslov V.G. Osnovnye dannye otechestvennykh aviatsionnykh GTD i ikh primenenie pri uchebnom proektirovanii (Basic data of domestic gas turbine engines and their application to educational design), Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet, 1999, 160 p.

  5. Nerubasskii V.V. Turboreaktivnye dvukhkonturnye dvigateli dlya regional'nykh passazhirskikh, administrativnykh i uchebno-trenirovochnykh samoletov (Turbofan engines for regional passenger, administrative and training aircraft), Kharkov, Khar'kovskii aviatsionnyi institut, 2008. Part 3 “Dvigateli maloi tyagi” – 2017 p.

  6. Roux E. Turbofan and Turbojet Engines: Database Handbook. Editions, Elodie Roux, 2007, 595 p.

  7. Shustov I.G. Dvigateli 1944-2000: aviatsionnye, raketnye, morskie, pro-myshlennye (Engines 1944-2000: aviation, rocket, marine, industrial), Moscow, AKS-Konversalt, Tsentr istorii aviatsionnykh dvigatelei, 2000, 394 p.

  8. Parametry dvigatelya TRENT-1000, http://www.rolls-royce.com/trent-1000-pack-c.aspx

  9. Parametry dvigatelya GE-90, https://www.geaviation.com/commercial/engines/ge90-engine

  10. Parametry dvigatelya PW4000-100, http://www.pw.utc.com/PW4000100_Engine

  11. Svoboda C. Turbofan Engine Database as a Preliminary Design Tool. Aircraft Design, 2000, no. 3, pp. 17-31.

  12. Mattingly J.D., Heiser W.H., Pratt D.T. Aircraft Engine Design. AIAA Education Series, 2002, 679 p. DOI: 10.2514/4.861444

  13. Civil Turbojet/Turbofan Specifications (sorted by engine manufacturer), http://www.jet-engine.net/civtfspec.html

  14. Kulagin V.V., Kuzmichev V.S. Teoriya, raschet i proektirovanie aviatsion-nykh dvigatelei i energeticheskikh ustanovok, Moscow, Innovatsionnoe mashinostroenie, 2017. Book 1 – 336 p.

  15. Sorkin L.I., Vedeshkin G.K., Knyazev A.N. Inostrannye aviatsionnye dvigateli (Foreign aircraft engines), Moscow, TsIAM, 2010, 415 p.

  16. Skvortsov T.V. Inostrannye aviatsionnye i raketnye dvigateli (Foreign aircraft and rocket engines), Moscow, TsIAM, 1978 – 324 p., 1981 – 298 p., 1984 319 p., 1987 – 312 p.

  17. Kulagin V.V. Teoriya, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok (Aircraft engines and power plants theory, calculation and design), Moscow, Mashinostroenie, 2005. Book 3 – 464 p.

  18. Grigor'ev V.A., Zagrebel'nyi A.O., Kuznetsov S.P. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 3, pp. 103-106.

  19. Lanskii A.M., Lukachev S.V., Kolomzarov O.V. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 3, pp. 47-57.

  20. Borovikov D.A., Ionov A.V., Seliverstov S.D., Yakovlev A.A. Trudy MAI, 2017, no. 96, available at: http://trudymai.ru/published.php?ID=85718

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI