The studies on optimal shape forming of a turbo-ramjet engine as a part of a high-speed aircraft power plant

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Fokin D. B.*, Selivanov O. D.**, Ezrokhi Y. A.***

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: NikOf@ciam.ru
**e-mail: selivanov@ciam.ru
***e-mail: yaezrokhi@ciam.ru

Abstract

Recently, the great attention is payed in many countries to the studies aimed at flight cruising speed increase of aircraft of various purposes. The projects aimed at considering the issues creating both passenger (Aerion AS2, QueSST, Sky-lon) and military (SR-72) high-speed aircraft are in full swing abroad.

The similar studies on building-up the flight speed of military planes are carried out in Russia too. Thereupon, the possibility of developing prospective Russian fighter-interceptor based on MiG-31 aircraft, which speed should substantially increased, presents undoubted interest. The same applies to an attack high-speed aircraft of the type of the Soviet T-4 scout bomber, or the US XB-70 “Valkyrie” strategic bomber with maximum flight speed, corresponding Mach number no less than M = 3.

The article presents the results of the study on the power plant optimal shape based on the turbo-ramjet engine with tandem configuration of the high-speed aircraft contours with cruising speed of Mcr = 4.

To solve the stated problem, the software complex consisting of mathematical models of the combined engine, including gas-turbine and direct-flow circuits, supersonic air intake and a full-range jet nozzle, as well as the technique for the aircraft performance characteristic computing. The developed program complex allowed evaluate the efficiency of such combined power plant application as a part of an aircraft with increased cruise speed.

The presented results demonstrated with high obviousness that the effort aimed at the power plant optimal shape formation is most expedient to perform in accordance to the procedure of optimization studies performing, which includes the task setting, the initial data preparation, parametric studies, post-optimization analysis and issuing recommendations.

Parametric optimization with seven parameters and three criteria with goal functions of subsonic and supersonic flight ranges at the optimal altitude, as well as required length of runway for the aborted-continued takeoff, was performed employing the above said approach. The optimization results revealed that the possibility of improving an high-speed aircraft performance relative to the conditionally preliminary basic variant.

Three aircraft options with the highest attractiveness level were selected out of the obtained twenty Pareto-optimal options by the “fuzzy sets” tool. Further final selection of the most expedient one out of these options always up to the development engineer and associated with taking a number of trade-off decisions.

Keywords:

high-speed aircraft, turbo-ramjet engine, the engine mathematical modeling, power plant parameters optimization, performance characteristics, fuzzy sets tools

References

  1. Lockheed SR-72, https://ru.wikipedia.org/wiki/Lockheed_SR-72

  2. Perspektivnyi samolet-razvedchik SR-72, https://topwar.ru/46614-perspektivnyy-samolet-razvedchik-sr-72.html

  3. Letchik-ispytatel': MiG-41 dolzhen razvivat' skorost' do 4,3 Makha, https://topwar.ru/40529-letchik-ispytatel-mig-41-dolzhen-razvivat-skorost-do-43-maha.html

  4. Budushchee aviatsii. Perspektivnye proekty samoletov i vertoletov, https://geektimes.ru/post/278482

  5. Mezhdunarodnyi proekt sverkhzvukovogo passazhirsko go samoleta s uchastiem Rossii RUMBLE, http://www.tsagi.ru/pressroom/news/3497

  6. Druzhinin L.N., Shvets L.I., Lanshin A.I. Trudy TsIAM, 1979, no. 832, 45 p.

  7. Osipov B.M., Titov A.V., Tunakov A.P., Khamzin A.S., Yavkin V.B. Avtomatizirovannoe proektirovanie dvigatelei (Computer aided design of engines), Kazan, Kazanskii gosudarstvennyi tekhnicheskii universitet, 2005, 166 p.

  8. Akhmetzyanov D.A., Goryunov I.M., Krivosheev I.A. Termogazodinamicheskii analiz rabochikh protsessov GTD v kompyuternoi srede DVIGw (Thermo-gas-dynamic analysis of GTE working processes in DVIGw computer environment), Ufa , UGATU, 2003, 162 p.

  9. Visser W.P.J. and Broomhead M.J. GSP: A generic object-oriented gas turbine simulation environment. Nationaal Lucht- en Ruimtevaartlaboratorium, 2000, 20 p. URL: http://hdl.handle.net/10921/839

  10. Kurzke J. Calculation of Installation Effects Within Performance Computer Programs. AGARD Lecture Series – Steady and Transient Perfor- mance Prediction of Gas Turbine Engines, 1992, 19 p. (183 p.).

  11. Jeschke P., Kurzke J., Schaber R. and Riegler C. Preliminary Gas Turbine Design Using the Multidisciplinary Design System MOPEDS. Journal of Engineering for Gas Turbine and Power, 2004, vol. 126, no. 2, pp. 258-264. DOI: 10.1115/1.1639009

  12. Platunov V.S. Metodologiya sistemnykh voenno-nauchnykh issledovanii aviatsionnykh kompleksov (System military-scientific researches methodology of Aviation complexes), Moscow, Delta, 2005, 344 p.

  13. Lukovnikov A.V. Vestnik Moskovskogo aviatsionnogo instituta, 2008, vol. 15, no. 3, pp. 34-43.

  14. Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation – RTO technical report, NATO TR-AVT-036 (North Atlantic Treaty Organization, Applied Vehicle Technology). February 2007.

  15. Opisanie programmy APP (Aircraft Performance Program) po opredeleniyu LTKh samoleta, 2011, http://www.darcorp.com/Software/APP/Documents/APP_ReleaseNotes_Dec11.pdf

  16. Nechaev Yu.N. Silovye ustanovki giperzvukovykh i vozdushno-kosmicheskikh letatel'nykh apparatov (Power plants of hypersonic and aerospace aircraft), Moscow, Akademiya Kosmonavtiki im. K.E. Tsiolkovskogo, 1996, 213 p.

  17. Selivanov O.D., Dulepov N.P., Kharchevnikova G.D. Osnovnye rezul'taty nauchno-tekhnicheskoi deyatel'nosti TsIAM (2008), Moscow, TsIAM, 2009, pp. 175-176.

  18. Demenchenok V.P., Druzhinin L.N., Parkhomov A.L. Teoriya dvukhkonturnykh turboreaktivnykh dvigatelei (The theory of bypass turbojet engines), Moscow, Mashinostroenie, 1979, 432 p.

  19. Ezrokhi Yu.A. Mashinostroenie. Entsiklopediya. Samolety i vertolety. T.IV-21, Moscow, Mashinostroenie, 2010. Book 3 “Aviatsionnye dvigateli”, pp. 341-356.

  20. Ezrokhi Yu.A., Kalenskii S.M., Kizeev I.S. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 1, pp. 26-37.

  21. Sobol' I.M., Statnikov R.B. Vybor optimal'nykh parametrov v zadachakh so mnogimi kriteriyami (Optimal parameters selection in problems with a number of criteria), Moscow, Drofa, 2006, 182 p.

  22. Fokin D.B., Isyanov A.M. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 4, pp. 132-143.

  23. Egorov I.N., Tyulenev V.P., Pavlenko V.F. Metody nepryamoi statisticheskoi optimizatsii na osnove samoorganizatsii i ikh ispol'zovanie v optimizatsionnykh zadachakh aviatsionnykh GTD (Indirect statistical optimization methods based on self-organization and their application in aviation GTE optimization problems), VINITI, no. 2622-V89, 1989.

  24. Egorov I.N., Kretinin G.V., Leshchenko I.A., Kuptzov S.V. IOSO Optimization Toolkit – Novel Software to Create Better Design. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (04 – 06 Sep. 2002, Atlanta, Georgia), www.iosotech.com/text/2002_4329.pdf

  25. Egorov I.N. Deterministic and stochastic optimization of variable axial compressor. ASME1993 International Gas Turbine and Aeroengine Congress and Exposition, 1993. DOI:10.1115/93-GT-397

  26. Bellman R., Zade L. Voprosy analiza i protsedury prinyatiya reshenii, Moscow, Mir, 1976, pp. 172-215.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI