Effect of casting parameters on shaped castings quality of a new high-temperature TiAl based alloy

Metallurgy and Material Science

Metal science and thermal processing of metals and alloys


Аuthors

Antipov V. V.*, Nochovnaya N. A., Kochetkov A. S., Panin P. V.**, Dzunovich D. A.

All-Russian Scientific Research Institute of Aviation Materials. State Research Center of the Russian Federation, 17, Radio str., Moscow, 105005, Russia

*e-mail: antipovvv@viam.ru
**e-mail: PaninPaV@yandex.ru

Abstract

The results of original research on cast structure and properties of a new high-temperature intermetallic gamma alloy Ti-45.5Al-2V-1Nb-1.5Zr(Cr)-Gd-B developed in VIAM [patent RU 2606368] have been discussed. A solidification temperature interval has been determined for the new alloy: solidus temperature 1471°C, liquidus temperature of 1528°C. The pouring gate system has been designed with the help of ProCast software taking into account centrifugal casting technique which provides both full mould filling with molten metal and absence of metallurgical defects in low pressure turbine blade castings. The research was focused on the effect of temperature and duration parameters of centrifugal casting on macro- and microstructures of shaped castings obtained in induction skull ALD Leicomelt 5 furnace. The X-ray spectral microanalysis has revealed that the samples matrix consists of alternating γ -TiAl and α2-Ti3Al lamellae; there are areas with lower aluminum content and higher content of vanadium and zirconium/chromium; also excess phases enriched with gadolinium and oxygen have been found (complex gadolinium oxides). Microstructure analysis after hot isostatic pressing has shown that plate-like morphology of structure doesn't change: alternating lamellae of γ and α2 phases are gathered into colonies within prior β(α)  grains with small amounts of β phase along grain boundaries (the plates possess similar geometrical orientation within each lamellae colony). It has been shown that structure homogeneity of castings strongly depends on pre-heating temperature of casting moulds. As the experiment has revealed the optimal pre-heating temperature of casting moulds for the new alloy falls in the interval 750850°C. The research results have given the opportunity to develop casting and heat treatment processes which allowed to obtain defect-free shaped castings of turbine blades for aviation jet engines.

Keywords:

intermetallic compounds, titanium aluminide TiAl, gamma alloy, centrifugal casting, shaped castings, castings microstructure, turbine blades

References

  1. Dimiduk D.M. Gamma titanium aluminide alloys — an assessment within the competition of aerospace structural materials. Materials Science and Engineering: A, 1999, vol. 263, no. 2, pp. 281–288. DOI: 10.1016/S0921-5093(98)01158-7

  2. Kablov E.N. Aviatsionnye materialy i tekhnologii, 2012, no. S, pp. 7-17.

  3. Kablov E.N. Aviatsionnye materialy i tekhnologii, 2015, no. 1(34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33

  4. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii. Sbornik nauchno-informatsionnykh materialov (Tendencies and Reference Points of Russia Innovative Development. Scientific Data Collection), Moscow, VIAM, 2015, 720 p.

  5. Nochovnaya N.A., Panin P.V., Kochetkov A.S., Bokov K.A. Metallovedenie i termicheskaya obrabotka metallov, 2014, no. 7(709), pp. 23-27.

  6. Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Vestnik Rossiiskogo fonda fundamental'nykh issledovanii, 2015, no. 1(85), pp. 18-26.

  7. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallidnye splavy na osnove titana i nikelya (Intermetallic alloys based on Titanium and Nickel), Moscow, VIAM, 2018, 308 p.

  8. Umarova O.Z., Pozhoga V.A., Buranshina R.R. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 1, pp. 160-169.

  9. Kim Y.-W., Kim S.-L. Advances in gammalloy materials–processes–application technology: successes, dilemmas, and future. Journal of Metals, 2018, vol. 70, no. 4, pp. 553-560. DOI: 10.1007/s11837-018-2747-x

  10. Appel F., Paul J.D.H., Oehring M. Gamma titanium aluminide alloys: science and technology. Weinheim, Wiley-VCH Verlag & Co. KGaA, 2011, 745 p.

  11. Kothari K., Radhakrishnan R., Wereley N.M. Advances in gamma titanium aluminides and their manufacturing techniques. Progress in Aerospace Sciences, 2012, vol. 55,pp. 1-16. DOI: 10.1016/j.paerosci.2012.04.001

  12. Harding R.A., Wickins M., Wang H., Djambazov G., Pericleous K.A. Development of a turbulence-free casting technique for titanium aluminides. Intermetallics, 2011, vol. 19, no. 6, pp. 805-813. DOI: 10.1016/j.intermet.2010.11.022

  13. Imayev R.M., Imayev V.M., Oehring M., Appel F. Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics, 2007, vol. 15, no. 4, pp. 451-460. DOI: 10.1016/j.intermet.2006.05.003

  14. Wu X. Review of alloy and process develop- ent of TiAl alloys. Intermetallics, 2006, vol. 14, no. 10-11, pp. 1114-1122. DOI: 10.1016/j.intermet.2005.10.019

  15. Wu X., Hu D., Loretto M.H. Alloy and process development of TiAl. Journal of Materials Science, 2004, vol. 39, no. 12, pp. 3935-3940. DOI: 10.1023/B:JMSC.0000031474.29156.17

  16. Belov V.D., Petrovskii P.V., Fadeev A.V., Pavlinich S.P., Alikin P.V. Liteishchik Rossii, 2014, no. 1, pp. 10-12.

  17. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svoistva (Titanium Alloys. Composition, Structure, Properties. Reference book). Moscow, VILSMATI, 2009, 520 p.

  18. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Trudy VIAM, 2013, no. 3, available at: http://www.viam-works.ru/plugins/content/journal/uploads/articles/pdf/20.pdf

  19. Belov N.A., Samoshina M.E. Izvestiya vuzov. Tsvetnaya metallurgiya, 2013, no. 6, pp. 27–35. DOI: 10.17073/0021-3438-2013-6-27-35

  20. Belov V.D., Pavlinich S.P., Fadeev A.V. Liteishchik Rossii, 2013, no. 11, pp. 12-14.

  21. Imaev V.M., Imaev R.M., Oleneva T.I. Pisma o materialakh, 2011, vol. 1, no. 1, pp. 25-31.

  22. Okunev Yu.K., Rybin V.V., Slepnev V.N. Voprosy materialovedeniya, 2005, no. 4(44), pp. 22-36.

  23. Ivanov V.I., Yasinskii K.K. Tekhnologiya legkikh splavov, 1996, no. 3, pp. 7-12.

  24. Soldatenko I.V. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 4, pp. 189-194.

  25. Kablov E.N., Nochovnaya N.A., Kablov D.E., Antipov V.V., Panin P.V., Kochetkov A.S. Patent RU 2606368 C1, 10.01.2017.

  26. Kablov E.N., Nochovnaya N.A., Kablov D.E., Panin P.V. Patent RU 2614354 C1, 24.03.2017.

  27. Belov V.D., Petrovskii P.V., Pavlinich S.P., Alikin P.V., Demenok A.O. Patent RU 2520250 C1, 20.06.2014.

  28. Kablov E.N., Yasinskii K.K., Ivanov V.I., Antashev V.G., Tarasenko E.N. Patent RF 2191841, 27.10.2002.

  29. Kablov E.N., Ospennikova O.G., Vershkov A.V. Aviatsionnye materialy i tekhnologii, 2013, no. S2, pp. 3-10.

  30. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Aviatsionnye materialy i tekhnologii, 2014, no. 2(31), pp. 27-33. DOI: 10.18577/2071-9140-2014-0-2-27-33

  31. Nochovnaya N.A., Panin P.V., Kochetkov A.S. Problemy proizvodstva slitkov i polufabrikatov iz slozhnolegirovannykh i intermetallidnykh titanovykh splavov. Sbornik dokladov nauchnoi konferentsii. Moscow, VIAM, 2015, article 03.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI